These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 35320940)
21. TIGIT, the Next Step Towards Successful Combination Immune Checkpoint Therapy in Cancer. Ge Z; Peppelenbosch MP; Sprengers D; Kwekkeboom J Front Immunol; 2021; 12():699895. PubMed ID: 34367161 [TBL] [Abstract][Full Text] [Related]
22. Effective Anti-tumor Response by TIGIT Blockade Associated With FcγR Engagement and Myeloid Cell Activation. Han JH; Cai M; Grein J; Perera S; Wang H; Bigler M; Ueda R; Rosahl TW; Pinheiro E; LaFace D; Seghezzi W; Williams SMG Front Immunol; 2020; 11():573405. PubMed ID: 33117369 [TBL] [Abstract][Full Text] [Related]
23. Target therapy of TIGIT; a novel approach of immunotherapy for the treatment of colorectal cancer. Sun J; Tian Y; Yang C Naunyn Schmiedebergs Arch Pharmacol; 2024 Aug; ():. PubMed ID: 39158733 [TBL] [Abstract][Full Text] [Related]
24. CD155/TIGIT, a novel immune checkpoint in human cancers (Review). Liu L; You X; Han S; Sun Y; Zhang J; Zhang Y Oncol Rep; 2021 Mar; 45(3):835-845. PubMed ID: 33469677 [TBL] [Abstract][Full Text] [Related]
25. TIGIT: An emerging immune checkpoint target for immunotherapy in autoimmune disease and cancer. Zhao J; Li L; Yin H; Feng X; Lu Q Int Immunopharmacol; 2023 Jul; 120():110358. PubMed ID: 37262959 [TBL] [Abstract][Full Text] [Related]
26. Hemin blocks TIGIT/PVR interaction and induces ferroptosis to elicit synergistic effects of cancer immunotherapy. Zhou X; Li Y; Zhang X; Li B; Jin S; Wu M; Zhou X; Dong Q; Du J; Zhai W; Wu Y; Qiu L; Li G; Qi Y; Zhao W; Gao Y Sci China Life Sci; 2024 May; 67(5):996-1009. PubMed ID: 38324132 [TBL] [Abstract][Full Text] [Related]
27. Microwave ablation induces Th1-type immune response with activation of ICOS pathway in early-stage breast cancer. Zhou W; Yu M; Pan H; Qiu W; Wang H; Qian M; Che N; Zhang K; Mao X; Li L; Wang R; Xie H; Ling L; Zhao Y; Liu X; Wang C; Ding Q; Wang S J Immunother Cancer; 2021 Apr; 9(4):. PubMed ID: 33795388 [TBL] [Abstract][Full Text] [Related]
28. LIGHT (TNFSF14) Costimulation Enhances Myeloid Cell Activation and Antitumor Immunity in the Setting of PD-1/PD-L1 and TIGIT Checkpoint Blockade. Yoo KJ; Johannes K; González LE; Patel A; Shuptrine CW; Opheim Z; Lenz K; Campbell K; Nguyen TA; Miriyala J; Smith C; McGuire A; Tsai YH; Rangwala F; de Silva S; Schreiber TH; Fromm G J Immunol; 2022 Aug; 209(3):510-525. PubMed ID: 35817517 [TBL] [Abstract][Full Text] [Related]
29. Single-cell RNA sequencing indicates cordycepin remodels the tumor immune microenvironment to enhance TIGIT blockade's anti-tumor effect in colon cancer. Chen R; Feng C; Chen L; Zheng X; Fang W; Wu S; Gao X; Chen C; Yang J; Wu Y; Chen Y; Zheng P; Hu N; Yuan M; Fu Y; Ying H; Zhou J; Jiang J Int Immunopharmacol; 2024 Jan; 126():111268. PubMed ID: 37992442 [TBL] [Abstract][Full Text] [Related]
30. Discovery of a novel anti PD-L1 X TIGIT bispecific antibody for the treatment of solid tumors. Xiao Y; Chen P; Luo C; Xu Z; Li X; Liu L; Zhao L Cancer Treat Res Commun; 2021; 29():100467. PubMed ID: 34598062 [TBL] [Abstract][Full Text] [Related]
31. COM902, a novel therapeutic antibody targeting TIGIT augments anti-tumor T cell function in combination with PVRIG or PD-1 pathway blockade. Hansen K; Kumar S; Logronio K; Whelan S; Qurashi S; Cheng HY; Drake A; Tang M; Wall P; Bernados D; Leung L; Ophir E; Alteber Z; Cojocaru G; Galperin M; Frenkel M; White M; Hunter J; Liang SC; Kotturi MF Cancer Immunol Immunother; 2021 Dec; 70(12):3525-3540. PubMed ID: 33903974 [TBL] [Abstract][Full Text] [Related]
32. GITR and TIGIT immunotherapy provokes divergent multicellular responses in the tumor microenvironment of gastrointestinal cancers. Sathe A; Ayala C; Bai X; Grimes SM; Lee B; Kin C; Shelton A; Poultsides G; Ji HP Genome Med; 2023 Nov; 15(1):100. PubMed ID: 38008725 [TBL] [Abstract][Full Text] [Related]
33. LAG3 and TIGIT Expression on Tumor-Infiltrating Lymphocytes in Cutaneous Melanoma. Naimy S; Bzorek M; Eriksen JO; Løvendorf MB; Litman T; Dyring-Andersen B; Gjerdrum LMR Dermatology; 2024; 240(1):156-163. PubMed ID: 37952520 [TBL] [Abstract][Full Text] [Related]
34. Microwave ablation combined with OK-432 induces Th1-type response and specific antitumor immunity in a murine model of breast cancer. Li L; Wang W; Pan H; Ma G; Shi X; Xie H; Liu X; Ding Q; Zhou W; Wang S J Transl Med; 2017 Jan; 15(1):23. PubMed ID: 28137271 [TBL] [Abstract][Full Text] [Related]
35. Deep immunophenotyping at the single-cell level identifies a combination of anti-IL-17 and checkpoint blockade as an effective treatment in a preclinical model of data-guided personalized immunotherapy. Nagaoka K; Shirai M; Taniguchi K; Hosoi A; Sun C; Kobayashi Y; Maejima K; Fujita M; Nakagawa H; Nomura S; Kakimi K J Immunother Cancer; 2020 Oct; 8(2):. PubMed ID: 33093158 [TBL] [Abstract][Full Text] [Related]
36. TIGIT Blockade Reshapes the Tumor Microenvironment Based on the Single-cell RNA-Sequencing Analysis. Lang Y; Huang H; Jiang H; Wu S; Chen Y; Xu B; Liu Y; Zhu D; Zheng X; Chen L; Jiang J J Immunother; 2024 Jun; 47(5):172-181. PubMed ID: 38545758 [TBL] [Abstract][Full Text] [Related]
37. Blockade of TIGIT/CD155 Signaling Reverses T-cell Exhaustion and Enhances Antitumor Capability in Head and Neck Squamous Cell Carcinoma. Wu L; Mao L; Liu JF; Chen L; Yu GT; Yang LL; Wu H; Bu LL; Kulkarni AB; Zhang WF; Sun ZJ Cancer Immunol Res; 2019 Oct; 7(10):1700-1713. PubMed ID: 31387897 [TBL] [Abstract][Full Text] [Related]
38. TIGIT Induces (CD3+) T Cell Dysfunction in Colorectal Cancer by Inhibiting Glucose Metabolism. Shao Q; Wang L; Yuan M; Jin X; Chen Z; Wu C Front Immunol; 2021; 12():688961. PubMed ID: 34659197 [TBL] [Abstract][Full Text] [Related]
39. Intrinsic Expression of Immune Checkpoint Molecule TIGIT Could Help Tumor Growth Zhou XM; Li WQ; Wu YH; Han L; Cao XG; Yang XM; Wang HF; Zhao WS; Zhai WJ; Qi YM; Gao YF Front Immunol; 2018; 9():2821. PubMed ID: 30555485 [TBL] [Abstract][Full Text] [Related]
40. Elraglusib (9-ING-41), a selective small-molecule inhibitor of glycogen synthase kinase-3 beta, reduces expression of immune checkpoint molecules PD-1, TIGIT and LAG-3 and enhances CD8 Shaw G; Cavalcante L; Giles FJ; Taylor A J Hematol Oncol; 2022 Sep; 15(1):134. PubMed ID: 36104795 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]