These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 3532117)

  • 21. Control of photosystem genes in Rhodobacter capsulatus.
    Bauer C; Buggy J; Mosley C
    Trends Genet; 1993 Feb; 9(2):56-60. PubMed ID: 8456503
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Directed mutagenesis of the Rhodobacter capsulatus puhA gene and orf 214: pleiotropic effects on photosynthetic reaction center and light-harvesting 1 complexes.
    Wong DK; Collins WJ; Harmer A; Lilburn TG; Beatty JT
    J Bacteriol; 1996 Apr; 178(8):2334-42. PubMed ID: 8636035
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of the promoter and regulatory sequences of an oxygen-regulated bch operon in Rhodobacter capsulatus by site-directed mutagenesis.
    Ma D; Cook DN; O'Brien DA; Hearst JE
    J Bacteriol; 1993 Apr; 175(7):2037-45. PubMed ID: 8458846
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of pH, O2, and temperature on the absorption properties of the secondary light-harvesting antenna in members of the family Rhodospirillaceae.
    Uffen RL
    J Bacteriol; 1985 Sep; 163(3):943-50. PubMed ID: 3928601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Posttranscriptional control of puc operon expression of B800-850 light-harvesting complex formation in Rhodobacter sphaeroides.
    Lee JK; Kiley PJ; Kaplan S
    J Bacteriol; 1989 Jun; 171(6):3391-405. PubMed ID: 2470727
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression of the puf operon in an aerobic photosynthetic bacterium, Roseobacter denitrificans.
    Nishimura K; Shimada H; Ohta H; Masuda T; Shioi Y; Takamiya K
    Plant Cell Physiol; 1996 Mar; 37(2):153-9. PubMed ID: 8665093
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bacteriochlorophyll-dependent expression of genes for pigment-binding proteins in Rhodobacter capsulatus involves the RegB/RegA two-component system.
    Abada EM; Balzer A; Jäger A; Klug G
    Mol Genet Genomics; 2002 Apr; 267(2):202-9. PubMed ID: 11976963
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pleiotropic effects of localized Rhodobacter capsulatus puf operon deletions on production of light-absorbing pigment-protein complexes.
    Klug G; Cohen SN
    J Bacteriol; 1988 Dec; 170(12):5814-21. PubMed ID: 3056917
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation and characterization of light harvesting bacteriochlorophyll.protein complexes from Rhodopseudomonas capsulata.
    Feick R; Drews G
    Biochim Biophys Acta; 1978 Mar; 501(3):499-513. PubMed ID: 629962
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA binding characteristics of CrtJ. A redox-responding repressor of bacteriochlorophyll, carotenoid, and light harvesting-II gene expression in Rhodobacter capsulatus.
    Ponnampalam SN; Bauer CE
    J Biol Chem; 1997 Jul; 272(29):18391-6. PubMed ID: 9218481
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of bacteriochlorophyll accumulation by light in Rhodobacter capsulatus.
    Biel AJ
    J Bacteriol; 1986 Nov; 168(2):655-9. PubMed ID: 3782018
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptional regulation of several genes for bacteriochlorophyll biosynthesis in Rhodopseudomonas capsulata in response to oxygen.
    Biel AJ; Marrs BL
    J Bacteriol; 1983 Nov; 156(2):686-94. PubMed ID: 6415036
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An overlap between operons involved in carotenoid and bacteriochlorophyll biosynthesis in Rhodobacter capsulatus.
    Young DA; Rudzik MB; Marrs BL
    FEMS Microbiol Lett; 1992 Aug; 74(2-3):213-8. PubMed ID: 1526454
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nucleotide and deduced polypeptide sequences of the photosynthetic reaction-center, B870 antenna, and flanking polypeptides from R. capsulata.
    Youvan DC; Bylina EJ; Alberti M; Begusch H; Hearst JE
    Cell; 1984 Jul; 37(3):949-57. PubMed ID: 6744416
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carotenoid assembly regulates quinone diffusion and the
    Xin J; Shi Y; Zhang X; Yuan X; Xin Y; He H; Shen J; Blankenship RE; Xu X
    Elife; 2023 Sep; 12():. PubMed ID: 37737710
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rhodobacter capsulatus genes involved in early steps of the bacteriochlorophyll biosynthetic pathway.
    Yang ZM; Bauer CE
    J Bacteriol; 1990 Sep; 172(9):5001-10. PubMed ID: 2203738
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and functional proteomics of intracytoplasmic membrane assembly in Rhodobacter sphaeroides.
    Woronowicz K; Harrold JW; Kay JM; Niederman RA
    J Mol Microbiol Biotechnol; 2013; 23(1-2):48-62. PubMed ID: 23615195
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Localized transposon Tn5 mutagenesis of the photosynthetic gene cluster of Rhodobacter sphaeroides.
    Coomber SA; Chaudhri M; Connor A; Britton G; Hunter CN
    Mol Microbiol; 1990 Jun; 4(6):977-89. PubMed ID: 2170816
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carotenoid biosynthesis in photosynthetic bacteria. Genetic characterization of the Rhodobacter capsulatus CrtI protein.
    Bartley GE; Scolnik PA
    J Biol Chem; 1989 Aug; 264(22):13109-13. PubMed ID: 2546948
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic evidence for superoperonal organization of genes for photosynthetic pigments and pigment-binding proteins in Rhodobacter capsulatus.
    Young DA; Bauer CE; Williams JC; Marrs BL
    Mol Gen Genet; 1989 Jul; 218(1):1-12. PubMed ID: 2550757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.