BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 35321311)

  • 1. The Impact of Lateral Gene Transfer in
    Marti H; Suchland RJ; Rockey DD
    Front Cell Infect Microbiol; 2022; 12():861899. PubMed ID: 35321311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosomal Recombination Targets in
    Suchland RJ; Carrell SJ; Wang Y; Hybiske K; Kim DB; Dimond ZE; Hefty PS; Rockey DD
    J Bacteriol; 2019 Dec; 201(23):. PubMed ID: 31501285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Horizontal transfer of tetracycline resistance among Chlamydia spp. in vitro.
    Suchland RJ; Sandoz KM; Jeffrey BM; Stamm WE; Rockey DD
    Antimicrob Agents Chemother; 2009 Nov; 53(11):4604-11. PubMed ID: 19687238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tetracycline Selective Pressure and Homologous Recombination Shape the Evolution of Chlamydia suis: A Recently Identified Zoonotic Pathogen.
    Joseph SJ; Marti H; Didelot X; Read TD; Dean D
    Genome Biol Evol; 2016 Sep; 8(8):2613-23. PubMed ID: 27576537
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Marti H; Kim H; Joseph SJ; Dojiri S; Read TD; Dean D
    Front Microbiol; 2017; 8():156. PubMed ID: 28223970
    [No Abstract]   [Full Text] [Related]  

  • 6. Transposon Mutagenesis in Chlamydia trachomatis Identifies CT339 as a ComEC Homolog Important for DNA Uptake and Lateral Gene Transfer.
    LaBrie SD; Dimond ZE; Harrison KS; Baid S; Wickstrum J; Suchland RJ; Hefty PS
    mBio; 2019 Aug; 10(4):. PubMed ID: 31387908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lateral gene transfer in vitro in the intracellular pathogen Chlamydia trachomatis.
    Demars R; Weinfurter J; Guex E; Lin J; Potucek Y
    J Bacteriol; 2007 Feb; 189(3):991-1003. PubMed ID: 17122345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of Tetracycline and Rifamycin Resistant
    Marti H; Bommana S; Read TD; Pesch T; Prähauser B; Dean D; Borel N
    Front Microbiol; 2021; 12():630293. PubMed ID: 34276577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Chlamydia suis Genome Exhibits High Levels of Diversity, Plasticity, and Mobile Antibiotic Resistance: Comparative Genomics of a Recent Livestock Cohort Shows Influence of Treatment Regimes.
    Seth-Smith HM; Wanninger S; Bachmann N; Marti H; Qi W; Donati M; di Francesco A; Polkinghorne A; Borel N
    Genome Biol Evol; 2017 Mar; 9(3):750-760. PubMed ID: 28338777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome organization and genomics in
    Luu LDW; Kasimov V; Phillips S; Myers GSA; Jelocnik M
    Front Cell Infect Microbiol; 2023; 13():1178736. PubMed ID: 37287464
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Marti H; Biggel M; Shima K; Onorini D; Rupp J; Charette SJ; Borel N
    Microbiol Spectr; 2023 Dec; 11(6):e0237823. PubMed ID: 37882558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interplay of recombination and selection in the genomes of Chlamydia trachomatis.
    Joseph SJ; Didelot X; Gandhi K; Dean D; Read TD
    Biol Direct; 2011 May; 6():28. PubMed ID: 21615910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interstrain gene transfer in Chlamydia trachomatis in vitro: mechanism and significance.
    DeMars R; Weinfurter J
    J Bacteriol; 2008 Mar; 190(5):1605-14. PubMed ID: 18083799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive genome analysis and comparisons of the swine pathogen, Chlamydia suis reveals unique ORFs and candidate host-specificity factors.
    Dimond ZE; Hefty PS
    Pathog Dis; 2021 Mar; 79(2):. PubMed ID: 32639528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformation and Mutagenesis of Chlamydia trachomatis and C. muridarum Utilizing pKW Vector.
    Wolf K
    Curr Protoc; 2023 May; 3(5):e775. PubMed ID: 37204235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlamydiaceae Genomics Reveals Interspecies Admixture and the Recent Evolution of Chlamydia abortus Infecting Lower Mammalian Species and Humans.
    Joseph SJ; Marti H; Didelot X; Castillo-Ramirez S; Read TD; Dean D
    Genome Biol Evol; 2015 Oct; 7(11):3070-84. PubMed ID: 26507799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances and Obstacles in the Genetic Dissection of Chlamydial Virulence.
    Brothwell JA; Muramatsu MK; Zhong G; Nelson DE
    Curr Top Microbiol Immunol; 2018; 412():133-158. PubMed ID: 29090367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recombination in the genome of Chlamydia trachomatis involving the polymorphic membrane protein C gene relative to ompA and evidence for horizontal gene transfer.
    Gomes JP; Bruno WJ; Borrego MJ; Dean D
    J Bacteriol; 2004 Jul; 186(13):4295-306. PubMed ID: 15205432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic diversity of the tryptophan pathway in chlamydiae: reductive evolution and a novel operon for tryptophan recapture.
    Xie G; Bonner CA; Jensen RA
    Genome Biol; 2002 Aug; 3(9):research0051. PubMed ID: 12225590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Chlamydia psittaci genome: a comparative analysis of intracellular pathogens.
    Voigt A; Schöfl G; Saluz HP
    PLoS One; 2012; 7(4):e35097. PubMed ID: 22506068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.