These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35321523)

  • 1. Effect of Computational Method on Accumulated O
    Medbø JI; Welde B
    Front Sports Act Living; 2022; 4():772049. PubMed ID: 35321523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximal accumulated oxygen deficit must be calculated using 10-min time periods.
    Buck D; McNaughton L
    Med Sci Sports Exerc; 1999 Sep; 31(9):1346-9. PubMed ID: 10487379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic capacity determined by maximal accumulated O2 deficit.
    Medbø JI; Mohn AC; Tabata I; Bahr R; Vaage O; Sejersted OM
    J Appl Physiol (1985); 1988 Jan; 64(1):50-60. PubMed ID: 3356666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of hand paddles on anaerobic energy release during supramaximal swimming.
    Ogita F; Onodera T; Tabata I
    Med Sci Sports Exerc; 1999 May; 31(5):729-35. PubMed ID: 10331895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling.
    Medbø JI; Tabata I
    J Appl Physiol (1985); 1993 Oct; 75(4):1654-60. PubMed ID: 8282617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen deficit and slow oxygen component relationships between intermittent and continuous exercise.
    Scott CB
    J Sports Sci; 1999 Dec; 17(12):951-6. PubMed ID: 10622355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of accumulated O2 deficit in exhaustive short-duration exercise.
    Hill DW
    Can J Appl Physiol; 1996 Feb; 21(1):63-74. PubMed ID: 8664847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise.
    Medbø JI; Tabata I
    J Appl Physiol (1985); 1989 Nov; 67(5):1881-6. PubMed ID: 2600022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of recovery mode on performance, O2 uptake, and O2 deficit during high-intensity intermittent exercise.
    Dorado C; Sanchis-Moysi J; Calbet JA
    Can J Appl Physiol; 2004 Jun; 29(3):227-44. PubMed ID: 15199225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic profile of high intensity intermittent exercises.
    Tabata I; Irisawa K; Kouzaki M; Nishimura K; Ogita F; Miyachi M
    Med Sci Sports Exerc; 1997 Mar; 29(3):390-5. PubMed ID: 9139179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The maximal accumulated oxygen deficit method: a valid and reliable measure of anaerobic capacity?
    Noordhof DA; de Koning JJ; Foster C
    Sports Med; 2010 Apr; 40(4):285-302. PubMed ID: 20364874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen deficit is not affected by the rate of transition from rest to submaximal exercise.
    Ren JM; Broberg S; Sahlin K
    Acta Physiol Scand; 1989 Apr; 135(4):545-8. PubMed ID: 2735198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulated oxygen deficit increases with inclination of uphill running.
    Olesen HL
    J Appl Physiol (1985); 1992 Sep; 73(3):1130-4. PubMed ID: 1400026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulated O2 deficit during intense exercise and muscle characteristics of elite athletes.
    Bangsbo J; Michalsik L; Petersen A
    Int J Sports Med; 1993 May; 14(4):207-13. PubMed ID: 8325720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comparison between Different Methods of Estimating Anaerobic Energy Production.
    Andersson EP; McGawley K
    Front Physiol; 2018; 9():82. PubMed ID: 29472871
    [No Abstract]   [Full Text] [Related]  

  • 16. O2 uptake kinetics and the O2 deficit as related to exercise intensity and blood lactate.
    Barstow TJ; Casaburi R; Wasserman K
    J Appl Physiol (1985); 1993 Aug; 75(2):755-62. PubMed ID: 8226479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maximal accumulated oxygen deficit in patients with chronic heart failure.
    Mezzani A; Corrà U; Sassi B; Colombo R; Giordano A; Giannuzzi P
    Med Sci Sports Exerc; 2006 Mar; 38(3):424-32. PubMed ID: 16540828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Re-interpreting anaerobic metabolism: an argument for the application of both anaerobic glycolysis and excess post-exercise oxygen comsumption (EPOC) as independent sources of energy expenditure.
    Scott CB
    Eur J Appl Physiol Occup Physiol; 1998 Feb; 77(3):200-5. PubMed ID: 9535579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time course of anaerobic and aerobic energy expenditure during short-term exhaustive running in athletes.
    Nummela A; Rusko H
    Int J Sports Med; 1995 Nov; 16(8):522-7. PubMed ID: 8776206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of training status on maximal accumulated oxygen deficit during all-out cycle exercise.
    Gastin PB; Lawson DL
    Eur J Appl Physiol Occup Physiol; 1994; 69(4):321-30. PubMed ID: 7851368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.