These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 35321648)
1. Comparative transcriptome analysis of heat stress responses of Clematis lanuginosa and Clematis crassifolia. Qian R; Hu Q; Ma X; Zhang X; Ye Y; Liu H; Gao H; Zheng J BMC Plant Biol; 2022 Mar; 22(1):138. PubMed ID: 35321648 [TBL] [Abstract][Full Text] [Related]
2. Contrasting growth, physiological and gene expression responses of Clematis crassifolia and Clematis cadmia to different irradiance conditions. Ma X; Qian R; Zhang X; Hu Q; Liu H; Zheng J Sci Rep; 2019 Nov; 9(1):17842. PubMed ID: 31780789 [TBL] [Abstract][Full Text] [Related]
3. Physiological and Gene Expression Changes of Hu Q; Qian R; Zhang Y; Zhang X; Ma X; Zheng J Front Plant Sci; 2021; 12():624875. PubMed ID: 33841457 [No Abstract] [Full Text] [Related]
4. Transcriptome Profiling of Clematis apiifolia: Insights into Heat-Stress Responses. Gao L; Ma Y; Wang P; Wang S; Yang R; Wang Q; Li L; Li Y DNA Cell Biol; 2017 Nov; 36(11):938-946. PubMed ID: 28945464 [TBL] [Abstract][Full Text] [Related]
5. Insights into heat response mechanisms in Clematis species: physiological analysis, expression profiles and function verification. Zhang H; Jiang C; Wang R; Zhang L; Gai R; Peng S; Zhang Y; Mao C; Lou Y; Mo J; Feng S; Ming F Plant Mol Biol; 2021 Aug; 106(6):569-587. PubMed ID: 34260001 [TBL] [Abstract][Full Text] [Related]
6. One Heat Shock Transcription Factor Confers High Thermal Tolerance in Clematis Plants. Wang R; Mao C; Jiang C; Zhang L; Peng S; Zhang Y; Feng S; Ming F Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33809330 [TBL] [Abstract][Full Text] [Related]
7. Correction to: Comparative transcriptome analysis of heat stress responses of Clematis lanuginosa and Clematis crassifolia. Qian R; Hu Q; Ma X; Zhang X; Ye Y; Liu H; Gao H; Zheng J BMC Plant Biol; 2022 Apr; 22(1):171. PubMed ID: 35379179 [No Abstract] [Full Text] [Related]
8. Proteome and transcriptome reveal the involvement of heat shock proteins and antioxidant system in thermotolerance of Clematis florida. Jiang C; Bi Y; Mo J; Zhang R; Qu M; Feng S; Essemine J Sci Rep; 2020 Jun; 10(1):8883. PubMed ID: 32483281 [TBL] [Abstract][Full Text] [Related]
9. Comparative transcriptome analysis reveals the transcriptional alterations in heat-resistant and heat-sensitive sweet maize (Zea mays L.) varieties under heat stress. Shi J; Yan B; Lou X; Ma H; Ruan S BMC Plant Biol; 2017 Jan; 17(1):26. PubMed ID: 28122503 [TBL] [Abstract][Full Text] [Related]
10. The effect of exogenous melatonin on waterlogging stress in Chen K; Hu Q; Ma X; Zhang X; Qian R; Zheng J Front Plant Sci; 2024; 15():1385165. PubMed ID: 38957603 [No Abstract] [Full Text] [Related]
11. Composition and Biosynthesis of Scent Compounds from Sterile Flowers of an Ornamental Plant Jiang Y; Qian R; Zhang W; Wei G; Ma X; Zheng J; Köllner TG; Chen F Molecules; 2020 Apr; 25(7):. PubMed ID: 32276485 [No Abstract] [Full Text] [Related]
12. Comparative transcriptome analyses revealed different heat stress responses in high- and low-GS Brassica alboglabra sprouts. Guo R; Wang X; Han X; Li W; Liu T; Chen B; Chen X; Wang-Pruski G BMC Genomics; 2019 Apr; 20(1):269. PubMed ID: 30947685 [TBL] [Abstract][Full Text] [Related]
13. Seasonal variation of two floral patterns in Clematis 'Vyvyan Pennell' and its underlying mechanism. Wang Y; Pan Y; Peng L; Wang J BMC Plant Biol; 2024 Jan; 24(1):22. PubMed ID: 38166716 [TBL] [Abstract][Full Text] [Related]
14. Analysis of Floral Color Differences between Different Ecological Conditions of Guo X; Wang G; Li J; Li J; Sun X Molecules; 2023 Jan; 28(1):. PubMed ID: 36615653 [TBL] [Abstract][Full Text] [Related]
15. Transcriptomic and proteomic analyses of leaves from Clematis terniflora DC. under high level of ultraviolet-B irradiation followed by dark treatment. Yang B; Guan Q; Tian J; Komatsu S J Proteomics; 2017 Jan; 150():323-340. PubMed ID: 27765634 [TBL] [Abstract][Full Text] [Related]
16. Global Responses of Autopolyploid Sugarcane Badila ( Yang S; Chu N; Feng N; Zhou B; Zhou H; Deng Z; Shen X; Zheng D Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835268 [TBL] [Abstract][Full Text] [Related]
17. Characterization of new microsatellite markers based on the transcriptome sequencing of Liu Z; Shao W; Shen Y; Ji M; Chen W; Ye Y; Shen Y Hereditas; 2018; 155():23. PubMed ID: 29785177 [TBL] [Abstract][Full Text] [Related]
18. Early Response of Radish to Heat Stress by Strand-Specific Transcriptome and miRNA Analysis. Yang Z; Li W; Su X; Ge P; Zhou Y; Hao Y; Shu H; Gao C; Cheng S; Zhu G; Wang Z Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31284545 [TBL] [Abstract][Full Text] [Related]
19. Integrated analysis of co-expression, conserved genes and gene families reveal core regulatory network of heat stress response in Cleistogenes songorica, a xerophyte perennial desert plant. Yan Q; Zong X; Wu F; Li J; Ma T; Zhao Y; Ma Q; Wang P; Wang Y; Zhang J BMC Genomics; 2020 Oct; 21(1):715. PubMed ID: 33066732 [TBL] [Abstract][Full Text] [Related]
20. Global analysis of switchgrass (Panicum virgatum L.) transcriptomes in response to interactive effects of drought and heat stresses. Hayford RK; Serba DD; Xie S; Ayyappan V; Thimmapuram J; Saha MC; Wu CH; Kalavacharla VK BMC Plant Biol; 2022 Mar; 22(1):107. PubMed ID: 35260072 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]