BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35322069)

  • 1. Draft genomes assembly and annotation of Carex parvula and Carex kokanica reveals stress-specific genes.
    Qu G; Bao Y; Liao Y; Liu C; Zi H; Bai M; Liu Y; Tu D; Wang L; Chen S; Zhou G; Can M
    Sci Rep; 2022 Mar; 12(1):4970. PubMed ID: 35322069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome sequence of Kobresia littledalei, the first chromosome-level genome in the family Cyperaceae.
    Can M; Wei W; Zi H; Bai M; Liu Y; Gao D; Tu D; Bao Y; Wang L; Chen S; Zhao X; Qu G
    Sci Data; 2020 Jun; 7(1):175. PubMed ID: 32528014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The chromosome-scale genome of Kobresia myosuroides sheds light on karyotype evolution and recent diversification of a dominant herb group on the Qinghai-Tibet Plateau.
    Ning Y; Li Y; Dong SB; Yang HG; Li CY; Xiong B; Yang J; Hu YK; Mu XY; Xia XF
    DNA Res; 2023 Feb; 30(1):. PubMed ID: 36503982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome Assembly and Microsatellite Marker Development Using Illumina and PacBio Sequencing in the
    Kim KR; Yu JN; Hong JM; Kim SY; Park SY
    Genes (Basel); 2023 Nov; 14(11):. PubMed ID: 38003006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological response of Kobresia pygmaea to temperature changes on the Qinghai-Tibet Plateau.
    Xu H; Li L; Mao N; Gan Z; Xue S; Li X; Zhang B; Liu G; Wu X
    BMC Plant Biol; 2022 Jan; 22(1):51. PubMed ID: 35073847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and validation of stable reference genes for RT-qPCR analyses of Kobresia littledalei seedlings.
    Sun H; Li C; Li S; Ma J; Li S; Li X; Gao C; Yang R; Ma N; Yang J; Yang P; He X; Hu T
    BMC Plant Biol; 2024 May; 24(1):389. PubMed ID: 38730341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Kobresia pygmaea ecosystem of the Tibetan highlands - Origin, functioning and degradation of the world's largest pastoral alpine ecosystem: Kobresia pastures of Tibet.
    Miehe G; Schleuss PM; Seeber E; Babel W; Biermann T; Braendle M; Chen F; Coners H; Foken T; Gerken T; Graf HF; Guggenberger G; Hafner S; Holzapfel M; Ingrisch J; Kuzyakov Y; Lai Z; Lehnert L; Leuschner C; Li X; Liu J; Liu S; Ma Y; Miehe S; Mosbrugger V; Noltie HJ; Schmidt J; Spielvogel S; Unteregelsbacher S; Wang Y; Willinghöfer S; Xu X; Yang Y; Zhang S; Opgenoorth L; Wesche K
    Sci Total Environ; 2019 Jan; 648():754-771. PubMed ID: 30134213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic diversity of five Kobresia species along the eastern Qinghai-Tibet plateau in China.
    Zhao QF; Wang G; Li QX; Ma SR; Cui Y; Grillo M
    Hereditas; 2006 Dec; 143(2006):33-40. PubMed ID: 17362331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of rhizosphere fungi of
    Guo J; Xie Z; Meng Q; Xu H; Peng Q; Wang B; Dong D; Yang J; Jia S
    PeerJ; 2024; 12():e16620. PubMed ID: 38406296
    [No Abstract]   [Full Text] [Related]  

  • 10. Contribution of arbuscular mycorrhizal fungi of sedges to soil aggregation along an altitudinal alpine grassland gradient on the Tibetan Plateau.
    Li X; Zhang J; Gai J; Cai X; Christie P; Li X
    Environ Microbiol; 2015 Aug; 17(8):2841-57. PubMed ID: 25630567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in plant biomass and species composition of alpine Kobresia meadows along altitudinal gradient on the Qinghai-Tibetan Plateau.
    Wang C; Cao G; Wang Q; Jing Z; Ding L; Long R
    Sci China C Life Sci; 2008 Jan; 51(1):86-94. PubMed ID: 18176796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of simulative warming on growth and antioxidative characteristics of Kobresia pygmaea and K. tibetica in the permafrost region of Qinghai-Tibetan Plateau, China].
    Xiao Y; Wang GX; Yang Y; Yang Y; Peng AH; Zhang L
    Ying Yong Sheng Tai Xue Bao; 2017 Apr; 28(4):1161-1167. PubMed ID: 29741312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative proteomics analyses of Kobresia pygmaea adaptation to environment along an elevational gradient on the central Tibetan Plateau.
    Li X; Yang Y; Ma L; Sun X; Yang S; Kong X; Hu X; Yang Y
    PLoS One; 2014; 9(6):e98410. PubMed ID: 24887403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Timing and ecological priority shaped the diversification of sedges in the Himalayas.
    Uzma ; Jiménez-Mejías P; Amir R; Hayat MQ; Hipp AL
    PeerJ; 2019; 7():e6792. PubMed ID: 31211007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the complete chloroplast genome of
    Chen HY; Xia XF; Pan Z; Ning Y
    Mitochondrial DNA B Resour; 2022; 7(3):531-532. PubMed ID: 35356791
    [No Abstract]   [Full Text] [Related]  

  • 16. Iron nanoparticles induced the growth and physio-chemical changes in Kobresia capillifolia seedlings.
    Sun H; Qu G; Li S; Song K; Zhao D; Li X; Yang P; He X; Hu T
    Plant Physiol Biochem; 2023 Jan; 194():15-28. PubMed ID: 36368222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responses of sedimentary δ
    Bai Y; Tian Q; Fang X; Chen C; Liu X
    Sci Total Environ; 2020 Sep; 733():138087. PubMed ID: 32422458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Draft Genome Assembly of
    Gan X; Cao D; Zhang Z; Cheng S; Wei L; Li S; Liu B
    G3 (Bethesda); 2020 Apr; 10(4):1167-1173. PubMed ID: 32098800
    [No Abstract]   [Full Text] [Related]  

  • 19. Microsatellite primers in Carex moorcroftii (Cyperaceae), a dominant species of the steppe on the Qinghai-Tibetan Plateau.
    Liu W; Zhou Y; Liao H; Zhao Y; Song Z
    Am J Bot; 2011 Dec; 98(12):e382-4. PubMed ID: 22123716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosome-scale genome assemblies and annotations for Poales species Carex cristatella, Carex scoparia, Juncus effusus, and Juncus inflexus.
    Planta J; Liang YY; Xin H; Chansler MT; Prather LA; Jiang N; Jiang J; Childs KL
    G3 (Bethesda); 2022 Sep; 12(10):. PubMed ID: 35976112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.