These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35322082)

  • 1. Effect of hydrophobic moment on membrane interaction and cell penetration of apolipoprotein E-derived arginine-rich amphipathic α-helical peptides.
    Takechi-Haraya Y; Ohgita T; Kotani M; Kono H; Saito C; Tamagaki-Asahina H; Nishitsuji K; Uchimura K; Sato T; Kawano R; Sakai-Kato K; Izutsu KI; Saito H
    Sci Rep; 2022 Mar; 12(1):4959. PubMed ID: 35322082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel amphipathic cell-penetrating peptide based on the N-terminal glycosaminoglycan binding region of human apolipoprotein E.
    Ohgita T; Takechi-Haraya Y; Nadai R; Kotani M; Tamura Y; Nishikiori K; Nishitsuji K; Uchimura K; Hasegawa K; Sakai-Kato K; Akaji K; Saito H
    Biochim Biophys Acta Biomembr; 2019 Mar; 1861(3):541-549. PubMed ID: 30562499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural flexibility of apolipoprotein E-derived arginine-rich peptides improves their cell penetration capability.
    Takechi-Haraya Y; Ohgita T; Usui A; Nishitsuji K; Uchimura K; Abe Y; Kawano R; Konaklieva MI; Reimund M; Remaley AT; Sato Y; Izutsu KI; Saito H
    Sci Rep; 2023 Nov; 13(1):19396. PubMed ID: 37938626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of direct membrane penetration of arginine-rich peptides by polyproline II helix structure.
    Ohgita T; Takechi-Haraya Y; Okada K; Matsui S; Takeuchi M; Saito C; Nishitsuji K; Uchimura K; Kawano R; Hasegawa K; Sakai-Kato K; Akaji K; Izutsu KI; Saito H
    Biochim Biophys Acta Biomembr; 2020 Oct; 1862(10):183403. PubMed ID: 32585206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane interaction and perturbation mechanisms induced by two cationic cell penetrating peptides with distinct charge distribution.
    Alves ID; Goasdoué N; Correia I; Aubry S; Galanth C; Sagan S; Lavielle S; Chassaing G
    Biochim Biophys Acta; 2008; 1780(7-8):948-59. PubMed ID: 18498774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight into the role of physicochemical parameters in a novel series of amphipathic peptides for efficient DNA delivery.
    Sharma R; Shivpuri S; Anand A; Kulshreshtha A; Ganguli M
    Mol Pharm; 2013 Jul; 10(7):2588-600. PubMed ID: 23725377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionpair-π interactions favor cell penetration of arginine/tryptophan-rich cell-penetrating peptides.
    Walrant A; Bauzá A; Girardet C; Alves ID; Lecomte S; Illien F; Cardon S; Chaianantakul N; Pallerla M; Burlina F; Frontera A; Sagan S
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183098. PubMed ID: 31676372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enthalpy-driven interactions with sulfated glycosaminoglycans promote cell membrane penetration of arginine peptides.
    Takechi-Haraya Y; Nadai R; Kimura H; Nishitsuji K; Uchimura K; Sakai-Kato K; Kawakami K; Shigenaga A; Kawakami T; Otaka A; Hojo H; Sakashita N; Saito H
    Biochim Biophys Acta; 2016 Jun; 1858(6):1339-49. PubMed ID: 27003128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-metabolic membrane tubulation and permeability induced by bioactive peptides.
    Lamazière A; Burlina F; Wolf C; Chassaing G; Trugnan G; Ayala-Sanmartin J
    PLoS One; 2007 Feb; 2(2):e201. PubMed ID: 17299584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides.
    Jobin ML; Blanchet M; Henry S; Chaignepain S; Manigand C; Castano S; Lecomte S; Burlina F; Sagan S; Alves ID
    Biochim Biophys Acta; 2015 Feb; 1848(2):593-602. PubMed ID: 25445669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures and mode of membrane interaction of a short alpha helical lytic peptide and its diastereomer determined by NMR, FTIR, and fluorescence spectroscopy.
    Oren Z; Ramesh J; Avrahami D; Suryaprakash N; Shai Y; Jelinek R
    Eur J Biochem; 2002 Aug; 269(16):3869-80. PubMed ID: 12180963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient focal membrane deformation induced by arginine-rich peptides leads to their direct penetration into cells.
    Hirose H; Takeuchi T; Osakada H; Pujals S; Katayama S; Nakase I; Kobayashi S; Haraguchi T; Futaki S
    Mol Ther; 2012 May; 20(5):984-93. PubMed ID: 22334015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current Understanding of Physicochemical Mechanisms for Cell Membrane Penetration of Arginine-rich Cell Penetrating Peptides: Role of Glycosaminoglycan Interactions.
    Takechi-Haraya Y; Saito H
    Curr Protein Pept Sci; 2018; 19(6):623-630. PubMed ID: 29332576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arginine-rich cell-penetrating peptides induce membrane multilamellarity and subsequently enter via formation of a fusion pore.
    Allolio C; Magarkar A; Jurkiewicz P; Baxová K; Javanainen M; Mason PE; Šachl R; Cebecauer M; Hof M; Horinek D; Heinz V; Rachel R; Ziegler CM; Schröfel A; Jungwirth P
    Proc Natl Acad Sci U S A; 2018 Nov; 115(47):11923-11928. PubMed ID: 30397112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and synthesis of amphiphilic alpha-helical model peptides with systematically varied hydrophobic-hydrophilic balance and their interaction with lipid- and bio-membranes.
    Kiyota T; Lee S; Sugihara G
    Biochemistry; 1996 Oct; 35(40):13196-204. PubMed ID: 8855958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different membrane behaviour and cellular uptake of three basic arginine-rich peptides.
    Walrant A; Correia I; Jiao CY; Lequin O; Bent EH; Goasdoué N; Lacombe C; Chassaing G; Sagan S; Alves ID
    Biochim Biophys Acta; 2011 Jan; 1808(1):382-93. PubMed ID: 20920465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physicochemical mechanism for the enhanced ability of lipid membrane penetration of polyarginine.
    Takechi Y; Yoshii H; Tanaka M; Kawakami T; Aimoto S; Saito H
    Langmuir; 2011 Jun; 27(11):7099-107. PubMed ID: 21526829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of the hydrophobicity gradient of an amphipathic peptide to its mode of association with lipids.
    Pérez-Méndez O; Vanloo B; Decout A; Goethals M; Peelman F; Vandekerckhove J; Brasseur R; Rosseneu M
    Eur J Biochem; 1998 Sep; 256(3):570-9. PubMed ID: 9780233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonhemolytic Cell-Penetrating Peptides: Site Specific Introduction of Glutamine and Lysine Residues into the α-Helical Peptide Causes Deletion of Its Direct Membrane Disrupting Ability but Retention of Its Cell Penetrating Ability.
    Kim S; Hyun S; Lee Y; Lee Y; Yu J
    Biomacromolecules; 2016 Sep; 17(9):3007-15. PubMed ID: 27442521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes.
    Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M
    Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.