These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 35322206)

  • 41. A high-throughput microplate toxicity screening platform based on Caenorhabditis elegans.
    Wu J; Gao Y; Xi J; You X; Zhang X; Zhang X; Cao Y; Liu P; Chen X; Luan Y
    Ecotoxicol Environ Saf; 2022 Oct; 245():114089. PubMed ID: 36126550
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microfluidic electric parallel egg-laying assay and application to in-vivo toxicity screening of microplastics using C. elegans.
    Youssef K; Archonta D; Kubiseski TJ; Tandon A; Rezai P
    Sci Total Environ; 2021 Aug; 783():147055. PubMed ID: 34088132
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Conditional immobilization for live imaging Caenorhabditis elegans using auxin-dependent protein depletion.
    Cahoon CK; Libuda DE
    G3 (Bethesda); 2021 Oct; 11(11):. PubMed ID: 34534266
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans.
    Chung K; Crane MM; Lu H
    Nat Methods; 2008 Jul; 5(7):637-43. PubMed ID: 18568029
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Droplet array for screening acute behaviour response to chemicals in Caenorhabditis elegans.
    Aubry G; Lu H
    Lab Chip; 2017 Dec; 17(24):4303-4311. PubMed ID: 29120477
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A computational model for C. elegans locomotory behavior: application to multiworm tracking.
    Roussel N; Morton CA; Finger FP; Roysam B
    IEEE Trans Biomed Eng; 2007 Oct; 54(10):1786-97. PubMed ID: 17926677
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantitative behavioural phenotyping to investigate anaesthesia induced neurobehavioural impairment.
    Nambyiah P; Brown AEX
    Sci Rep; 2021 Sep; 11(1):19398. PubMed ID: 34588499
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-throughput screening and biosensing with fluorescent C. elegans strains.
    Leung CK; Deonarine A; Strange K; Choe KP
    J Vis Exp; 2011 May; (51):. PubMed ID: 21633332
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fast whole-body motor neuron calcium imaging of freely moving Caenorhabditis elegans without coverslip pressed.
    Li H; Feng F; Zhai M; Zhang J; Jiang J; Su Y; Chen L; Gao S; Tao L; Mao H
    Cytometry A; 2021 Nov; 99(11):1143-1157. PubMed ID: 34235849
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Whole-organism eQTL mapping at cellular resolution with single-cell sequencing.
    Ben-David E; Boocock J; Guo L; Zdraljevic S; Bloom JS; Kruglyak L
    Elife; 2021 Mar; 10():. PubMed ID: 33734084
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Automating Aggregate Quantification in Caenorhabditis elegans.
    Vaziriyan-Sani AS; Handy RD; Walker AC; Pagolu CN; Enslow SM; Czyż DM
    J Vis Exp; 2021 Oct; (176):. PubMed ID: 34723951
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A new platform for long-term tracking and recording of neural activity and simultaneous optogenetic control in freely behaving Caenorhabditis elegans.
    Gengyo-Ando K; Kagawa-Nagamura Y; Ohkura M; Fei X; Chen M; Hashimoto K; Nakai J
    J Neurosci Methods; 2017 Jul; 286():56-68. PubMed ID: 28506879
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Powerful New Quantitative Genetics Platform, Combining Caenorhabditis elegans High-Throughput Fitness Assays with a Large Collection of Recombinant Strains.
    Andersen EC; Shimko TC; Crissman JR; Ghosh R; Bloom JS; Seidel HS; Gerke JP; Kruglyak L
    G3 (Bethesda); 2015 Mar; 5(5):911-20. PubMed ID: 25770127
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-Throughput Quantitative RT-PCR in Single and Bulk C. elegans Samples Using Nanofluidic Technology.
    Chauve L; Le Pen J; Hodge F; Todtenhaupt P; Biggins L; Miska EA; Andrews S; Casanueva O
    J Vis Exp; 2020 May; (159):. PubMed ID: 32538915
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A multi-animal tracker for studying complex behaviors.
    Itskovits E; Levine A; Cohen E; Zaslaver A
    BMC Biol; 2017 Apr; 15(1):29. PubMed ID: 28385158
    [TBL] [Abstract][Full Text] [Related]  

  • 56. WorMachine: machine learning-based phenotypic analysis tool for worms.
    Hakim A; Mor Y; Toker IA; Levine A; Neuhof M; Markovitz Y; Rechavi O
    BMC Biol; 2018 Jan; 16(1):8. PubMed ID: 29338709
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Highly Parallelized, Multicolor Optogenetic Recordings of Cellular Activity for Therapeutic Discovery Applications in Ion Channels and Disease-Associated Excitable Cells.
    Borja GB; Zhang H; Harwood BN; Jacques J; Grooms J; Chantre RO; Zhang D; Barnett A; Werley CA; Lu Y; Nagle SF; McManus OB; Dempsey GT
    Front Mol Neurosci; 2022; 15():896320. PubMed ID: 35860501
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Functional analysis of epilepsy-associated GABA
    Gadhia A; Barker E; Morgan A; Barclay JW
    Epilepsia Open; 2024 Aug; 9(4):1458-1466. PubMed ID: 38813985
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reducing Results Variance in Lifespan Machines: An Analysis of the Influence of Vibrotaxis on Wild-Type
    Puchalt JC; Layana Castro PE; Sánchez-Salmerón AJ
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33105730
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Strategies for automated analysis of C. elegans locomotion.
    Buckingham SD; Sattelle DB
    Invert Neurosci; 2008 Sep; 8(3):121-31. PubMed ID: 18688666
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.