BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 35322386)

  • 1. Methods for CRISPR-Cas as Ribonucleoprotein Complex Delivery In Vivo.
    Bykonya AG; Lavrov AV; Smirnikhina SA
    Mol Biotechnol; 2023 Feb; 65(2):181-195. PubMed ID: 35322386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finely tuned ionizable lipid nanoparticles for CRISPR/Cas9 ribonucleoprotein delivery and gene editing.
    Im SH; Jang M; Park JH; Chung HJ
    J Nanobiotechnology; 2024 Apr; 22(1):175. PubMed ID: 38609947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small extracellular vesicles (sEVs)-based gene delivery platform for cell-specific CRISPR/Cas9 genome editing.
    Dubey S; Chen Z; Jiang YJ; Talis A; Molotkov A; Ali A; Mintz A; Momen-Heravi F
    Theranostics; 2024; 14(7):2777-2793. PubMed ID: 38773978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cationic lipid nanoparticle-mediated delivery of a Cas9/crRNA ribonucleoprotein complex for transgene-free editing of the citrus plant genome.
    Mahmoud LM; Dutt M
    Plant Cell Rep; 2024 Jun; 43(7):171. PubMed ID: 38874819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient genome editing in filamentous fungi via an improved CRISPR-Cas9 ribonucleoprotein method facilitated by chemical reagents.
    Zou G; Xiao M; Chai S; Zhu Z; Wang Y; Zhou Z
    Microb Biotechnol; 2021 Nov; 14(6):2343-2355. PubMed ID: 32841542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Genome Editing with Cas9 Ribonucleoprotein in Diverse Cells and Organisms.
    Farboud B; Jarvis E; Roth TL; Shin J; Corn JE; Marson A; Meyer BJ; Patel NH; Hochstrasser ML
    J Vis Exp; 2018 May; (135):. PubMed ID: 29889198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small extracellular vesicle-mediated CRISPR-Cas9 RNP delivery for cardiac-specific genome editing.
    Mun D; Kang JY; Kim H; Yun N; Joung B
    J Control Release; 2024 Jun; 370():798-810. PubMed ID: 38754633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Guanidinobenzol-Rich Polymer Overcoming Cascade Delivery Barriers for CRISPR-Cas9 Genome Editing.
    Liang S; Ma N; Li X; Yun K; Meng QF; Ma K; Yue L; Rao L; Chen X; Wang Z
    Nano Lett; 2024 Jun; 24(23):6872-6880. PubMed ID: 38683656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-Infrared Light Activated Formulation for the Spatially Controlled Release of CRISPR-Cas9 Ribonucleoprotein for Brain Gene Editing.
    Simões S; Lino M; Barrera A; Rebelo C; Tomatis F; Vilaça A; Breunig C; Neuner A; Peça J; González R; Carvalho A; Stricker S; Ferreira L
    Angew Chem Int Ed Engl; 2024 May; 63(21):e202401004. PubMed ID: 38497898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome Editing in Ferret Airway Epithelia Mediated by CRISPR/Nucleases Delivered with Amphiphilic Shuttle Peptides.
    Luo M; Ma J; Cheng X; Wu S; Bartels DJ; Guay D; Engelhardt JF; Liu X
    Hum Gene Ther; 2023 Aug; 34(15-16):705-718. PubMed ID: 37335046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering self-deliverable ribonucleoproteins for genome editing in the brain.
    Chen K; Stahl EC; Kang MH; Xu B; Allen R; Trinidad M; Doudna JA
    Nat Commun; 2024 Feb; 15(1):1727. PubMed ID: 38409124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPRoff enables spatio-temporal control of CRISPR editing.
    Carlson-Stevermer J; Kelso R; Kadina A; Joshi S; Rossi N; Walker J; Stoner R; Maures T
    Nat Commun; 2020 Oct; 11(1):5041. PubMed ID: 33028827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of conventional and alternative CRISPR/Cas9 genome editing to enhance a single-base pair knock-in mutation.
    Edmondson C; Zhou Q; Liu X
    BMC Biotechnol; 2021 Jul; 21(1):45. PubMed ID: 34315458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Genome Editing in Multiple Salmonid Cell Lines Using Ribonucleoprotein Complexes.
    Gratacap RL; Jin YH; Mantsopoulou M; Houston RD
    Mar Biotechnol (NY); 2020 Oct; 22(5):717-724. PubMed ID: 32946000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Editing of the CXCR4 Locus Using Cas9 Ribonucleoprotein Complexes Stabilized with Polyglutamic Acid.
    Golubev DS; Komkov DS; Shepelev MV; Mazurov DV; Kruglova NA
    Dokl Biol Sci; 2023 Dec; 513(Suppl 1):S28-S32. PubMed ID: 38190037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual screening of CRISPR/Cas9 editing efficiency based on micropattern arrays for editing porcine cells.
    Peng W; Gao M; Zhu X; Liu X; Yang G; Li S; Liu Y; Bai L; Yang J; Bao J
    Biotechnol J; 2024 Apr; 19(4):e2300691. PubMed ID: 38622798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Cas12a delivery by DNA-mediated bioresponsive editing for cholesterol regulation.
    Sun W; Wang J; Hu Q; Zhou X; Khademhosseini A; Gu Z
    Sci Adv; 2020 May; 6(21):eaba2983. PubMed ID: 32490205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaffold-mediated CRISPR-Cas9 delivery system for acute myeloid leukemia therapy.
    Ho TC; Kim HS; Chen Y; Li Y; LaMere MW; Chen C; Wang H; Gong J; Palumbo CD; Ashton JM; Kim HW; Xu Q; Becker MW; Leong KW
    Sci Adv; 2021 May; 7(21):. PubMed ID: 34138728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiency, Specificity and Temperature Sensitivity of Cas9 and Cas12a RNPs for DNA-free Genome Editing in Plants.
    Banakar R; Schubert M; Kurgan G; Rai KM; Beaudoin SF; Collingwood MA; Vakulskas CA; Wang K; Zhang F
    Front Genome Ed; 2021; 3():760820. PubMed ID: 35098208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cas12a ribonucleoprotein-mediated gene editing in the plant pathogenic fungus
    Huang J; Cook DE
    STAR Protoc; 2022 Mar; 3(1):101072. PubMed ID: 35005648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.