BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 35322514)

  • 1. In Situ Spectroscopic Characterization and Theoretical Calculations Identify Partially Reduced ZnO
    Liu X; Luo J; Wang H; Huang L; Wang S; Li S; Sun Z; Sun F; Jiang Z; Wei S; Li WX; Lu J
    Angew Chem Int Ed Engl; 2022 Jun; 61(23):e202202330. PubMed ID: 35322514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogenation of CO
    Palomino RM; Ramírez PJ; Liu Z; Hamlyn R; Waluyo I; Mahapatra M; Orozco I; Hunt A; Simonovis JP; Senanayake SD; Rodriguez JA
    J Phys Chem B; 2018 Jan; 122(2):794-800. PubMed ID: 28825484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the components' interface on the synthesis of methanol over Cu/ZnO from CO2/H2: a microkinetic analysis based on DFT + U calculations.
    Tang QL; Zou WT; Huang RK; Wang Q; Duan XX
    Phys Chem Chem Phys; 2015 Mar; 17(11):7317-33. PubMed ID: 25697118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Role of Nanosheet-Like Pr
    Zhang G; Liu M; Fan G; Zheng L; Li F
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):2768-2781. PubMed ID: 34994552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capsule-Structured Copper-Zinc Catalyst for Highly Efficient Hydrogenation of Carbon Dioxide to Methanol.
    Guo Y; Guo X; Song C; Han X; Liu H; Zhao Z
    ChemSusChem; 2019 Nov; 12(22):4916-4926. PubMed ID: 31560446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Operando high-pressure investigation of size-controlled CuZn catalysts for the methanol synthesis reaction.
    Divins NJ; Kordus D; Timoshenko J; Sinev I; Zegkinoglou I; Bergmann A; Chee SW; Widrinna S; Karslıoğlu O; Mistry H; Lopez Luna M; Zhong JQ; Hoffman AS; Boubnov A; Boscoboinik JA; Heggen M; Dunin-Borkowski RE; Bare SR; Cuenya BR
    Nat Commun; 2021 Mar; 12(1):1435. PubMed ID: 33664267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Integrated Copper-Based Nanoparticles/Amorphous Metal-Organic Framework by a Facile Spray-Drying Method: Highly Enhanced CO
    Mitsuka Y; Ogiwara N; Mukoyoshi M; Kitagawa H; Yamamoto T; Toriyama T; Matsumura S; Haneda M; Kawaguchi S; Kubota Y; Kobayashi H
    Angew Chem Int Ed Engl; 2021 Oct; 60(41):22283-22288. PubMed ID: 34382312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active sites for CO
    Kattel S; Ramírez PJ; Chen JG; Rodriguez JA; Liu P
    Science; 2017 Mar; 355(6331):1296-1299. PubMed ID: 28336665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Ce-CuZn catalyst with abundant Cu/Zn-O
    Ye R; Ma L; Mao J; Wang X; Hong X; Gallo A; Ma Y; Luo W; Wang B; Zhang R; Duyar MS; Jiang Z; Liu J
    Nat Commun; 2024 Mar; 15(1):2159. PubMed ID: 38461315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zeolite-Encapsulated Ultrasmall Cu/ZnO
    Cui WG; Li YT; Yu L; Zhang H; Hu TL
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):18693-18703. PubMed ID: 33852283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining Atomic Layer Deposition with Surface Organometallic Chemistry to Enhance Atomic-Scale Interactions and Improve the Activity and Selectivity of Cu-Zn/SiO
    Zhou H; Docherty SR; Phongprueksathat N; Chen Z; Bukhtiyarov AV; Prosvirin IP; Safonova OV; Urakawa A; Copéret C; Müller CR; Fedorov A
    JACS Au; 2023 Sep; 3(9):2536-2549. PubMed ID: 37772188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO2 Hydrogenation.
    Martin O; Martín AJ; Mondelli C; Mitchell S; Segawa TF; Hauert R; Drouilly C; Curulla-Ferré D; Pérez-Ramírez J
    Angew Chem Int Ed Engl; 2016 May; 55(21):6261-5. PubMed ID: 26991730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Insights into the Role of Al
    Hu J; Song Y; Huang J; Li Y; Chen M; Wan H
    Chemistry; 2017 Aug; 23(44):10632-10637. PubMed ID: 28544004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CO
    Wang L; Etim UJ; Zhang C; Amirav L; Zhong Z
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35893495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the ternary interactions in Cu-ZnO-ZrO
    Wang Y; Kattel S; Gao W; Li K; Liu P; Chen JG; Wang H
    Nat Commun; 2019 Mar; 10(1):1166. PubMed ID: 30858380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape-Dependent CO
    Kordus D; Jelic J; Lopez Luna M; Divins NJ; Timoshenko J; Chee SW; Rettenmaier C; Kröhnert J; Kühl S; Trunschke A; Schlögl R; Studt F; Roldan Cuenya B
    J Am Chem Soc; 2023 Feb; 145(5):3016-3030. PubMed ID: 36716273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual active sites over Cu-ZnO-ZrO
    Sun X; Jin Y; Cheng Z; Lan G; Wang X; Qiu Y; Wang Y; Liu H; Li Y
    J Environ Sci (China); 2023 Sep; 131():162-172. PubMed ID: 37225377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flame Synthesis of Cu/ZnO-CeO
    Zhu J; Ciolca D; Liu L; Parastaev A; Kosinov N; Hensen EJM
    ACS Catal; 2021 Apr; 11(8):4880-4892. PubMed ID: 33898079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cylindrical shaped ZnO combined Cu catalysts for the hydrogenation of CO
    Lei H; Zheng R; Liu Y; Gao J; Chen X; Feng X
    RSC Adv; 2019 Apr; 9(24):13696-13704. PubMed ID: 35519552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.