BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35322591)

  • 1. Chloroform-Assisted Rapid Growth of Vertical Graphene Array and Its Application in Thermal Interface Materials.
    Xu S; Cheng T; Yan Q; Shen C; Yu Y; Lin CT; Ding F; Zhang J
    Adv Sci (Weinh); 2022 May; 9(15):e2200737. PubMed ID: 35322591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorobenzene and Water-Promoted Rapid Growth of Vertical Graphene Arrays by Electric-Field-Assisted PECVD.
    Shen C; Xu S; Chen Z; Ji N; Yang J; Zhang J
    Small; 2023 Mar; 19(10):e2207745. PubMed ID: 36650988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scalable Compliant Graphene Fiber-Based Thermal Interface Material with Metal-Level Thermal Conductivity via Dual-Field Synergistic Alignment Engineering.
    Lu J; Ming X; Cao M; Liu Y; Wang B; Shi H; Hao Y; Zhang P; Li K; Wang L; Li P; Gao W; Cai S; Sun B; Yu ZZ; Xu Z; Gao C
    ACS Nano; 2024 Jun; ():. PubMed ID: 38941591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultralow Interfacial Thermal Resistance of Graphene Thermal Interface Materials with Surface Metal Liquefaction.
    Dai W; Ren XJ; Yan Q; Wang S; Yang M; Lv L; Ying J; Chen L; Tao P; Sun L; Xue C; Yu J; Song C; Nishimura K; Jiang N; Lin CT
    Nanomicro Lett; 2022 Dec; 15(1):9. PubMed ID: 36484932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vertically Aligned Boron Nitride Nanosheets Films for Superior Electronic Cooling.
    Yang K; Yang X; Liu Z; Li K; Yue Y; Zhang R; Wang F; Shi X; Yuan J; Liu N; Wang G; Wang Z; Xin G
    ACS Appl Mater Interfaces; 2023 Jun; 15(23):28536-28545. PubMed ID: 37264810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Switching Vertical to Horizontal Graphene Growth Using Faraday Cage-Assisted PECVD Approach for High-Performance Transparent Heating Device.
    Qi Y; Deng B; Guo X; Chen S; Gao J; Li T; Dou Z; Ci H; Sun J; Chen Z; Wang R; Cui L; Chen X; Chen K; Wang H; Wang S; Gao P; Rummeli MH; Peng H; Zhang Y; Liu Z
    Adv Mater; 2018 Feb; 30(8):. PubMed ID: 29318672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A highly orientational architecture formed by covalently bonded graphene to achieve high through-plane thermal conductivity of polymer composites.
    Yan Q; Gao J; Chen D; Tao P; Chen L; Ying J; Tan X; Lv L; Dai W; Alam FE; Yu J; Wang Y; Li H; Xue C; Nishimura K; Wu S; Jiang N; Lin CT
    Nanoscale; 2022 Aug; 14(31):11171-11178. PubMed ID: 35880701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controllable Fabrication of Vertical Graphene with Tunable Growth Nature by Remote Plasma-Enhanced Chemical Vapor Deposition.
    Zhang TT; Lv BH; Fan CC; Shi BY; Cao QJ; Wang W; Tao FF; Dou WD
    ACS Omega; 2023 Oct; 8(39):36245-36252. PubMed ID: 37810641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Hierarchically Structured Graphene/Ag Nanowires Paper as Thermal Interface Material.
    Lv L; Ying J; Chen L; Tao P; Sun L; Yang K; Fu L; Yu J; Yan Q; Dai W; Jiang N; Lin CT
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-Level Thermally Conductive yet Soft Graphene Thermal Interface Materials.
    Dai W; Ma T; Yan Q; Gao J; Tan X; Lv L; Hou H; Wei Q; Yu J; Wu J; Yao Y; Du S; Sun R; Jiang N; Wang Y; Kong J; Wong C; Maruyama S; Lin CT
    ACS Nano; 2019 Oct; 13(10):11561-11571. PubMed ID: 31550125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced thermal properties of epoxy composites by constructing thermal conduction networks with low content of three-dimensional graphene.
    Li C; Huang M; Zhang Z; Qin Y; Liang L; Tian ZQ; Ali A; Shen PK
    Nanotechnology; 2023 Mar; 34(23):. PubMed ID: 36877999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Thermally Conductive Graphene-Based Thermal Interface Materials with a Bilayer Structure for Central Processing Unit Cooling.
    Wang ZG; Lv JC; Zheng ZL; Du JG; Dai K; Lei J; Xu L; Xu JZ; Li ZM
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25325-25333. PubMed ID: 34009940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significantly enhanced phonon mean free path and thermal conductivity by percolation of silver nanoflowers.
    Suh D; Lee S; Xu C; Jan AA; Baik S
    Phys Chem Chem Phys; 2019 Jan; 21(5):2453-2462. PubMed ID: 30652710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen-Assisted Trimming Growth of Ultrahigh Vertical Graphene Films in a PECVD Process for Superior Energy Storage.
    Han J; Ma Y; Wang M; Li L; Tong Z; Xiao L; Jia S; Chen X
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):12400-12407. PubMed ID: 33667074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Paper-Like Inorganic Thermal Interface Material Composed of Hierarchically Structured Graphene/Silicon Carbide Nanorods.
    Dai W; Lv L; Lu J; Hou H; Yan Q; Alam FE; Li Y; Zeng X; Yu J; Wei Q; Xu X; Wu J; Jiang N; Du S; Sun R; Xu J; Wong CP; Lin CT
    ACS Nano; 2019 Feb; 13(2):1547-1554. PubMed ID: 30726676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface Modification Using Polydopamine-Coated Liquid Metal Nanocapsules for Improving Performance of Graphene Paper-Based Thermal Interface Materials.
    Gao J; Yan Q; Tan X; Lv L; Ying J; Zhang X; Yang M; Du S; Wei Q; Xue C; Li H; Yu J; Lin CT; Dai W; Jiang N
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34067230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling.
    Zhang K; Chai Y; Yuen MM; Xiao DG; Chan PC
    Nanotechnology; 2008 May; 19(21):215706. PubMed ID: 21730585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The liquid-exfoliation of graphene assisted with hyperbranched polyethylene-g-polyhedral oligomeric silsesquioxane copolymer and its thermal property in polydimethylsiloxane nanocomposite.
    Ye H; Han B; Chen H; Xu L
    Nanotechnology; 2019 Aug; 30(35):355602. PubMed ID: 31067519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Growth of Patterned Vertical Graphene Using Thermal Stress Mismatch between Barrier Layer and Substrate.
    Qian F; Deng J; Ma X; Fu G; Xu C
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aluminum/Graphene Thermal Interface Materials with Positive Temperature Dependence.
    Cai W; Lu Y; Wang C; Li Q; Zheng Y
    ACS Appl Mater Interfaces; 2024 Jul; 16(26):33993-34000. PubMed ID: 38910293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.