These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35322668)

  • 1. Information Extraction From Electronic Health Records to Predict Readmission Following Acute Myocardial Infarction: Does Natural Language Processing Using Clinical Notes Improve Prediction of Readmission?
    Brown JR; Ricket IM; Reeves RM; Shah RU; Goodrich CA; Gobbel G; Stabler ME; Perkins AM; Minter F; Cox KC; Dorn C; Denton J; Bray BE; Gouripeddi R; Higgins J; Chapman WW; MacKenzie T; Matheny ME
    J Am Heart Assoc; 2022 Apr; 11(7):e024198. PubMed ID: 35322668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Electronic Health Record-Based Prediction Models for 30-Day Readmission Risk Among Patients Hospitalized for Acute Myocardial Infarction.
    Matheny ME; Ricket I; Goodrich CA; Shah RU; Stabler ME; Perkins AM; Dorn C; Denton J; Bray BE; Gouripeddi R; Higgins J; Chapman WW; MacKenzie TA; Brown JR
    JAMA Netw Open; 2021 Jan; 4(1):e2035782. PubMed ID: 33512518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing readmission prediction models by integrating insights from home healthcare notes: Retrospective cohort study.
    Gan S; Kim C; Chang J; Lee DY; Park RW
    Int J Nurs Stud; 2024 Oct; 158():104850. PubMed ID: 39024965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural language processing for prediction of readmission in posterior lumbar fusion patients: which free-text notes have the most utility?
    Karhade AV; Lavoie-Gagne O; Agaronnik N; Ghaednia H; Collins AK; Shin D; Schwab JH
    Spine J; 2022 Feb; 22(2):272-277. PubMed ID: 34407468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An administrative claims measure suitable for profiling hospital performance based on 30-day all-cause readmission rates among patients with acute myocardial infarction.
    Krumholz HM; Lin Z; Drye EE; Desai MM; Han LF; Rapp MT; Mattera JA; Normand SL
    Circ Cardiovasc Qual Outcomes; 2011 Mar; 4(2):243-52. PubMed ID: 21406673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of Prediction Models for Critical Care Outcomes Using Natural Language Processing of Electronic Health Record Data.
    Marafino BJ; Park M; Davies JM; Thombley R; Luft HS; Sing DC; Kazi DS; DeJong C; Boscardin WJ; Dean ML; Dudley RA
    JAMA Netw Open; 2018 Dec; 1(8):e185097. PubMed ID: 30646310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute Myocardial Infarction Readmission Risk Prediction Models: A Systematic Review of Model Performance.
    Smith LN; Makam AN; Darden D; Mayo H; Das SR; Halm EA; Nguyen OK
    Circ Cardiovasc Qual Outcomes; 2018 Jan; 11(1):e003885. PubMed ID: 29321135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural language processing of admission notes to predict severe maternal morbidity during the delivery encounter.
    Clapp MA; Kim E; James KE; Perlis RH; Kaimal AJ; McCoy TH
    Am J Obstet Gynecol; 2022 Sep; 227(3):511.e1-511.e8. PubMed ID: 35430230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Utility of Nursing Notes Among Medicare Patients With Heart Failure to Predict 30-Day Rehospitalization: A Pilot Study.
    Kang Y; Topaz M; Dunbar SB; Stehlik J; Hurdle J
    J Cardiovasc Nurs; 2022 Nov-Dec 01; 37(6):E181-E186. PubMed ID: 34935742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning on Medicare Claims Poorly Predicts the Individual Risk of 30-Day Unplanned Readmission After Total Joint Arthroplasty, Yet Uncovers Interesting Population-level Associations With Annual Procedure Volumes.
    Kunze KN; So MM; Padgett DE; Lyman S; MacLean CH; Fontana MA
    Clin Orthop Relat Res; 2023 Sep; 481(9):1745-1759. PubMed ID: 37256278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Natural Language Processing of Clinical Notes With a Validated Risk-Stratification Tool to Predict Severe Maternal Morbidity.
    Clapp MA; Kim E; James KE; Perlis RH; Kaimal AJ; McCoy TH; Easter SR
    JAMA Netw Open; 2022 Oct; 5(10):e2234924. PubMed ID: 36197662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical Model to Predict 90-Day Risk of Readmission After Acute Myocardial Infarction.
    Kini V; Peterson PN; Spertus JA; Kennedy KF; Arnold SV; Wasfy JH; Curtis JP; Bradley SM; Amin AP; Ho PM; Masoudi FA
    Circ Cardiovasc Qual Outcomes; 2018 Oct; 11(10):e004788. PubMed ID: 30354578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diagnosis-specific readmission risk prediction using electronic health data: a retrospective cohort study.
    Hebert C; Shivade C; Foraker R; Wasserman J; Roth C; Mekhjian H; Lemeshow S; Embi P
    BMC Med Inform Decis Mak; 2014 Aug; 14():65. PubMed ID: 25091637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preoperative prediction model for risk of readmission after total joint replacement surgery: a random forest approach leveraging NLP and unfairness mitigation for improved patient care and cost-effectiveness.
    Digumarthi V; Amin T; Kanu S; Mathew J; Edwards B; Peterson LA; Lundy ME; Hegarty KE
    J Orthop Surg Res; 2024 May; 19(1):287. PubMed ID: 38725085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multisite comparison using electronic health records and natural language processing to identify the association between suicidality and hospital readmission amongst patients with eating disorders.
    Cliffe C; Cusick M; Vellupillai S; Shear M; Downs J; Epstein S; Pathak J; Dutta R
    Int J Eat Disord; 2023 Aug; 56(8):1581-1592. PubMed ID: 37194359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of 30-Day Readmission After Stroke Using Machine Learning and Natural Language Processing.
    Lineback CM; Garg R; Oh E; Naidech AM; Holl JL; Prabhakaran S
    Front Neurol; 2021; 12():649521. PubMed ID: 34326805
    [No Abstract]   [Full Text] [Related]  

  • 17. Diagnoses and timing of 30-day readmissions after hospitalization for heart failure, acute myocardial infarction, or pneumonia.
    Dharmarajan K; Hsieh AF; Lin Z; Bueno H; Ross JS; Horwitz LI; Barreto-Filho JA; Kim N; Bernheim SM; Suter LG; Drye EE; Krumholz HM
    JAMA; 2013 Jan; 309(4):355-63. PubMed ID: 23340637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using machine learning to predict paediatric 30-day unplanned hospital readmissions: a case-control retrospective analysis of medical records, including written discharge documentation.
    Zhou H; Albrecht MA; Roberts PA; Porter P; Della PR
    Aust Health Rev; 2021 Jun; 45(3):328-337. PubMed ID: 33840419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thirty-Day Readmission Risk Model for Older Adults Hospitalized With Acute Myocardial Infarction.
    Dodson JA; Hajduk AM; Murphy TE; Geda M; Krumholz HM; Tsang S; Nanna MG; Tinetti ME; Goldstein D; Forman DE; Alexander KP; Gill TM; Chaudhry SI
    Circ Cardiovasc Qual Outcomes; 2019 May; 12(5):e005320. PubMed ID: 31010300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive Model Based on Health Data Analysis for Risk of Readmission in Disease-Specific Cohorts.
    Ansari MS; Alok AK; Jain D; Rana S; Gupta S; Salwan R; Venkatesh S
    Perspect Health Inf Manag; 2021; 18(Spring):1j. PubMed ID: 34035791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.