These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 35323050)

  • 1. Using pulmonary gas exchange to estimate shunt and deadspace in lung disease: theoretical approach and practical basis.
    Wagner PD; Malhotra A; Prisk GK
    J Appl Physiol (1985); 2022 Apr; 132(4):1104-1113. PubMed ID: 35323050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of reduction in alveolar-arterial PO2 difference by helium breathing in the exercising horse.
    Erickson BK; Seaman J; Kubo K; Hiraga A; Kai M; Yamaya Y; Wagner PD
    J Appl Physiol (1985); 1994 Jun; 76(6):2794-801. PubMed ID: 7928913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utility of deadspace and capnometry measurements in determination of surfactant efficacy in surfactant-depleted lungs.
    Wenzel U; Rüdiger M; Wagner MH; Wauer RR
    Crit Care Med; 1999 May; 27(5):946-52. PubMed ID: 10362418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased intrapulmonary shunt and alveolar dead space post-COVID-19.
    Farrow CE; Robles RA; Prisk GK; Harbut P; Malhotra A; Amis TC; Wagner PD; Kairaitis K
    J Appl Physiol (1985); 2023 Nov; 135(5):1012-1022. PubMed ID: 37767555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ideal alveolar gas defined by modal gas exchange in ventilation-perfusion distributions.
    Peyton PJ
    J Appl Physiol (1985); 2021 Dec; 131(6):1831-1838. PubMed ID: 34672764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring the efficiency of pulmonary gas exchange using expired gas instead of arterial blood: comparing the "ideal" Po
    West JB; Liu MA; Stark PC; Prisk GK
    Am J Physiol Lung Cell Mol Physiol; 2020 Aug; 319(2):L289-L293. PubMed ID: 32491950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of ventilation-perfusion inequality in COVID-19: a computational model.
    Busana M; Giosa L; Cressoni M; Gasperetti A; Di Girolamo L; Martinelli A; Sonzogni A; Lorini L; Palumbo MM; Romitti F; Gattarello S; Steinberg I; Herrmann P; Meissner K; Quintel M; Gattinoni L
    J Appl Physiol (1985); 2021 Mar; 130(3):865-876. PubMed ID: 33439790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local pulmonary blood flow: control and gas exchange.
    Sheehan DW; Farhi LE
    Respir Physiol; 1993 Oct; 94(1):91-107. PubMed ID: 8272584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deriving the arterial Po
    Prisk GK; West JB
    J Appl Physiol (1985); 2019 Oct; 127(4):1067-1074. PubMed ID: 31436512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variability of indices of hypoxemia in adult respiratory distress syndrome.
    Gowda MS; Klocke RA
    Crit Care Med; 1997 Jan; 25(1):41-5. PubMed ID: 8989174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrapulmonary shunt and alveolar dead space in a cohort of patients with acute COVID-19 pneumonitis and early recovery.
    Harbut P; Prisk GK; Lindwall R; Hamzei S; Palmgren J; Farrow CE; Hedenstierna G; Amis TC; Malhotra A; Wagner PD; Kairaitis K
    Eur Respir J; 2023 Jan; 61(1):. PubMed ID: 36137595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of alveolar deadspace fraction using arterial and end-tidal CO2: a factor analysis using a physiological simulation.
    Hardman JG; Aitkenhead AR
    Anaesth Intensive Care; 1999 Oct; 27(5):452-8. PubMed ID: 10520383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide inhalation increases alveolar gas exchange by decreasing deadspace volume.
    Skimming JW; Banner MJ; Spalding HK; Jaeger MJ; Burchfield DJ; Davenport PW
    Crit Care Med; 2001 Jun; 29(6):1195-200. PubMed ID: 11395602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Methods of interpreting pulmonary gas exchange].
    Schaffartzik W
    Anaesthesist; 1993 Jan; 42(1):3-10. PubMed ID: 8447570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Impairment of gas exchange in acute lung injury].
    Yamaguchi K; Mori M; Kawai A; Asano K; Takasugi T; Umeda A; Yokoyama T
    Nihon Kyobu Shikkan Gakkai Zasshi; 1991 Feb; 29(2):133-44. PubMed ID: 2033887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gas exchange in the parabronchial lung of birds: experiments in unidirectionally ventilated ducks.
    Burger RE; Meyer M; Graf W; Scheid P
    Respir Physiol; 1979 Jan; 36(1):19-37. PubMed ID: 419339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of uneven distribution of VA/Q ratio from data on exchange of respiratory gases.
    Doi K; Niizeki K; Kagawa T; Takahashi K
    Jpn J Physiol; 1986; 36(2):359-78. PubMed ID: 3090328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of end-tidal and arterial PCO2 gradient: comparison with experimental data.
    Benallal H; Denis C; Prieur F; Busso T
    Med Sci Sports Exerc; 2002 Apr; 34(4):622-9. PubMed ID: 11932570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulmonary gas exchange and ventilation during hemodialysis.
    Romaldini H; Faro S; Stabile C; dos-Santos ML; Ajzen H; Ratto OR
    Braz J Med Biol Res; 1982 Dec; 15(6):395-404. PubMed ID: 7184527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of continuing gas exchange to phase III exhaled PCO2 and PO2 profiles.
    Grønlund J; Swenson ER; Ohlsson J; Hlastala MP
    J Appl Physiol (1985); 1987 Jun; 62(6):2467-76. PubMed ID: 3112109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.