These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 35323260)

  • 21. 3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels.
    Liu P; Shen H; Zhi Y; Si J; Shi J; Guo L; Shen SG
    Colloids Surf B Biointerfaces; 2019 Sep; 181():1026-1034. PubMed ID: 31382330
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Agarose-Based Hydrogels as Suitable Bioprinting Materials for Tissue Engineering.
    López-Marcial GR; Zeng AY; Osuna C; Dennis J; García JM; O'Connell GD
    ACS Biomater Sci Eng; 2018 Oct; 4(10):3610-3616. PubMed ID: 33450800
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D Culture of Mesenchymal Stem Cells in Alginate Hydrogels.
    Bidarra SJ; Barrias CC
    Methods Mol Biol; 2019; 2002():165-180. PubMed ID: 30244438
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Construction of polyacrylamide/graphene oxide/gelatin/sodium alginate composite hydrogel with bioactivity for promoting Schwann cells growth.
    Zhao Y; Wang Y; Niu C; Zhang L; Li G; Yang Y
    J Biomed Mater Res A; 2018 Jul; 106(7):1951-1964. PubMed ID: 29575695
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation and characterization of a dual cross-linking injectable hydrogel based on sodium alginate and chitosan quaternary ammonium salt.
    Geng Z; Ji Y; Yu S; Liu Q; Zhou Z; Guo C; Lu D; Pei D
    Carbohydr Res; 2021 Sep; 507():108389. PubMed ID: 34265515
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of cell-benign inverse opal hydrogels for three-dimensional cell culture.
    Im P; Ji DH; Kim MK; Kim J
    J Colloid Interface Sci; 2017 May; 494():389-396. PubMed ID: 28171847
    [TBL] [Abstract][Full Text] [Related]  

  • 27.
    Ghanbari M; Salavati-Niasari M; Mohandes F; Dolatyar B; Zeynali B
    RSC Adv; 2021 Apr; 11(27):16688-16697. PubMed ID: 35479165
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Injectable, degradable, electroactive nanocomposite hydrogels containing conductive polymer nanoparticles for biomedical applications.
    Wang Q; Wang Q; Teng W
    Int J Nanomedicine; 2016; 11():131-44. PubMed ID: 26792990
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of alginate-based hydrogels: Crosslinking strategies and biomedical applications.
    Tan J; Luo Y; Guo Y; Zhou Y; Liao X; Li D; Lai X; Liu Y
    Int J Biol Macromol; 2023 Jun; 239():124275. PubMed ID: 37011751
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of halloysite nanotubes on physical properties and cytocompatibility of alginate composite hydrogels.
    Huang B; Liu M; Long Z; Shen Y; Zhou C
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):303-310. PubMed ID: 27770895
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidized Alginate-Gelatin Hydrogel: A Favorable Matrix for Growth and Osteogenic Differentiation of Adipose-Derived Stem Cells in 3D.
    Sarker B; Zehnder T; Rath SN; Horch RE; Kneser U; Detsch R; Boccaccini AR
    ACS Biomater Sci Eng; 2017 Aug; 3(8):1730-1737. PubMed ID: 33429654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mammalian and Fish Gelatin Methacryloyl-Alginate Interpenetrating Polymer Network Hydrogels for Tissue Engineering.
    Ma C; Choi JB; Jang YS; Kim SY; Bae TS; Kim YK; Park JM; Lee MH
    ACS Omega; 2021 Jul; 6(27):17433-17441. PubMed ID: 34278129
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Property modulation of the alginate-based hydrogel via semi-interpenetrating polymer network (semi-IPN) with poly(vinyl alcohol).
    Kim YJ; Min J
    Int J Biol Macromol; 2021 Dec; 193(Pt B):1068-1077. PubMed ID: 34798186
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication and properties of an injectable sodium alginate/PRP composite hydrogel as a potential cell carrier for cartilage repair.
    Gao X; Gao L; Groth T; Liu T; He D; Wang M; Gong F; Chu J; Zhao M
    J Biomed Mater Res A; 2019 Sep; 107(9):2076-2087. PubMed ID: 31087770
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Injectable photo crosslinked enhanced double-network hydrogels from modified sodium alginate and gelatin.
    Yuan L; Wu Y; Gu QS; El-Hamshary H; El-Newehy M; Mo X
    Int J Biol Macromol; 2017 Mar; 96():569-577. PubMed ID: 28017764
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Study of the Printability of Alginate-Based Bioinks by 3D Bioprinting for Articular Cartilage Tissue Engineering.
    Gorroñogoitia I; Urtaza U; Zubiarrain-Laserna A; Alonso-Varona A; Zaldua AM
    Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Effect of Agarose on 3D Bioprinting.
    Gong C; Kong Z; Wang X
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833327
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanically enhanced nested-network hydrogels as a coating material for biomedical devices.
    Wang Z; Zhang H; Chu AJ; Jackson J; Lin K; Lim CJ; Lange D; Chiao M
    Acta Biomater; 2018 Apr; 70():98-109. PubMed ID: 29447960
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-Dimensional-Printable Thermo/Photo-Cross-Linked Methacrylated Chitosan-Gelatin Hydrogel Composites for Tissue Engineering.
    Osi AR; Zhang H; Chen J; Zhou Y; Wang R; Fu J; Müller-Buschbaum P; Zhong Q
    ACS Appl Mater Interfaces; 2021 May; 13(19):22902-22913. PubMed ID: 33960765
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dual-Crosslinked Alginate-Based Hydrogels with Tunable Mechanical Properties for Cultured Meat.
    Tahir I; Floreani R
    Foods; 2022 Sep; 11(18):. PubMed ID: 36140953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.