These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 35323429)
1. Cuff-Less Blood Pressure Prediction from ECG and PPG Signals Using Fourier Transformation and Amplitude Randomization Preprocessing for Context Aggregation Network Training. Treebupachatsakul T; Boosamalee A; Shinnakerdchoke S; Pechprasarn S; Thongpance N Biosensors (Basel); 2022 Mar; 12(3):. PubMed ID: 35323429 [TBL] [Abstract][Full Text] [Related]
2. Calibration-free blood pressure estimation based on a convolutional neural network. Cho J; Shin H; Choi A Psychophysiology; 2024 Apr; 61(4):e14480. PubMed ID: 37971153 [TBL] [Abstract][Full Text] [Related]
3. Hybrid CNN-SVR Blood Pressure Estimation Model Using ECG and PPG Signals. Rastegar S; Gholam Hosseini H; Lowe A Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772300 [TBL] [Abstract][Full Text] [Related]
4. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals. Zhang Q; Zhou D; Zeng X Biomed Eng Online; 2017 Feb; 16(1):23. PubMed ID: 28166774 [TBL] [Abstract][Full Text] [Related]
5. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time. Li Y; Wang Z; Zhang L; Yang X; Song J Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801 [TBL] [Abstract][Full Text] [Related]
6. Combined deep CNN-LSTM network-based multitasking learning architecture for noninvasive continuous blood pressure estimation using difference in ECG-PPG features. Jeong DU; Lim KM Sci Rep; 2021 Jun; 11(1):13539. PubMed ID: 34188132 [TBL] [Abstract][Full Text] [Related]
7. Estimation of invasive coronary perfusion pressure using electrocardiogram and Photoplethysmography in a porcine model of cardiac arrest. Jiang L; Chen S; Pan X; Zhang J; Yin X; Guo C; Sun M; Ding B; Zhai X; Li K; Wang J; Chen Y Comput Methods Programs Biomed; 2024 Sep; 254():108284. PubMed ID: 38924799 [TBL] [Abstract][Full Text] [Related]
8. Cuff-less Blood Pressure Measurement Using Supplementary ECG and PPG Features Extracted Through Wavelet Transformation. Singla M; Sistla P; Azeemuddin S Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4628-4631. PubMed ID: 31946895 [TBL] [Abstract][Full Text] [Related]
9. Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques. Miao F; Wen B; Hu Z; Fortino G; Wang XP; Liu ZD; Tang M; Li Y Artif Intell Med; 2020 Aug; 108():101919. PubMed ID: 32972654 [TBL] [Abstract][Full Text] [Related]
10. Inferring ECG Waveforms from PPG Signals with a Modified U-Net Neural Network. Pinto RA; De Oliveira HS; Souto E; Giusti R; Veras R Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338791 [TBL] [Abstract][Full Text] [Related]
11. Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches. Khalid SG; Zhang J; Chen F; Zheng D J Healthc Eng; 2018; 2018():1548647. PubMed ID: 30425819 [TBL] [Abstract][Full Text] [Related]
12. An algorithm to detect dicrotic notch in arterial blood pressure and photoplethysmography waveforms using the iterative envelope mean method. Pal R; Rudas A; Kim S; Chiang JN; Barney A; Cannesson M Comput Methods Programs Biomed; 2024 Sep; 254():108283. PubMed ID: 38901273 [TBL] [Abstract][Full Text] [Related]
13. Blood pressure estimation and classification using a reference signal-less photoplethysmography signal: a deep learning framework. Pankaj ; Kumar A; Komaragiri R; Kumar M Phys Eng Sci Med; 2023 Dec; 46(4):1589-1605. PubMed ID: 37747644 [TBL] [Abstract][Full Text] [Related]
14. Effects of cuff inflation and deflation on pulse transit time measured from ECG and multi-wavelength PPG. Liu J; Li Y; Ding XR; Dai WX; Zhang YT Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5973-6. PubMed ID: 26737652 [TBL] [Abstract][Full Text] [Related]
15. A clinical set-up for noninvasive blood pressure monitoring using two photoplethysmograms and based on convolutional neural networks. Esmaelpoor J; Sanat ZM; Moradi MH Biomed Tech (Berl); 2021 Aug; 66(4):375-385. PubMed ID: 33826809 [TBL] [Abstract][Full Text] [Related]
17. Continuous blood pressure prediction system using Conv-LSTM network on hybrid latent features of photoplethysmogram (PPG) and electrocardiogram (ECG) signals. Kamanditya B; Fuadah YN; Mahardika T NQ; Lim KM Sci Rep; 2024 Jul; 14(1):16450. PubMed ID: 39014018 [TBL] [Abstract][Full Text] [Related]
18. A Continuous Non-Invasive Blood Pressure Prediction Method Based on Deep Sparse Residual U-Net Combined with Improved Squeeze and Excitation Skip Connections. Lai K; Wang X; Cao C Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732827 [TBL] [Abstract][Full Text] [Related]
19. Cuffless blood pressure estimation using chaotic features of photoplethysmograms and parallel convolutional neural network. Khodabakhshi MB; Eslamyeh N; Sadredini SZ; Ghamari M Comput Methods Programs Biomed; 2022 Nov; 226():107131. PubMed ID: 36137326 [TBL] [Abstract][Full Text] [Related]
20. Photoplethysmography Fast Upstroke Time Intervals Can Be Useful Features for Cuff-Less Measurement of Blood Pressure Changes in Humans. Natarajan K; Block RC; Yavarimanesh M; Chandrasekhar A; Mestha LK; Inan OT; Hahn JO; Mukkamala R IEEE Trans Biomed Eng; 2022 Jan; 69(1):53-62. PubMed ID: 34097603 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]