BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 35323676)

  • 21. SOD1 in neurotoxicity and its controversial roles in SOD1 mutation-negative ALS.
    Hayashi Y; Homma K; Ichijo H
    Adv Biol Regul; 2016 Jan; 60():95-104. PubMed ID: 26563614
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Delayed disease onset and extended survival in the SOD1G93A rat model of amyotrophic lateral sclerosis after suppression of mutant SOD1 in the motor cortex.
    Thomsen GM; Gowing G; Latter J; Chen M; Vit JP; Staggenborg K; Avalos P; Alkaslasi M; Ferraiuolo L; Likhite S; Kaspar BK; Svendsen CN
    J Neurosci; 2014 Nov; 34(47):15587-600. PubMed ID: 25411487
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms of mutant SOD1 induced mitochondrial toxicity in amyotrophic lateral sclerosis.
    Vehviläinen P; Koistinaho J; Gundars G
    Front Cell Neurosci; 2014; 8():126. PubMed ID: 24847211
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring new pathways of neurodegeneration in ALS: the role of mitochondria quality control.
    Palomo GM; Manfredi G
    Brain Res; 2015 May; 1607():36-46. PubMed ID: 25301687
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Prion-like Properties of Misfolded Cu/Zn-superoxide Dismutase in Amyotrophic Lateral Sclerosis: Update and Perspectives].
    Tokuda E; Marklund SL; Furukawa Y
    Yakugaku Zasshi; 2019; 139(7):1015-1019. PubMed ID: 31257248
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pathological Modification of TDP-43 in Amyotrophic Lateral Sclerosis with SOD1 Mutations.
    Jeon GS; Shim YM; Lee DY; Kim JS; Kang M; Ahn SH; Shin JY; Geum D; Hong YH; Sung JJ
    Mol Neurobiol; 2019 Mar; 56(3):2007-2021. PubMed ID: 29982983
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular analyses of the Cu/Zn superoxide dismutase gene in patients with familial amyotrophic lateral sclerosis (ALS) in Japan.
    Aoki M; Abe K; Itoyama Y
    Cell Mol Neurobiol; 1998 Dec; 18(6):639-47. PubMed ID: 9876871
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetics of amyotrophic lateral sclerosis: an update.
    Chen S; Sayana P; Zhang X; Le W
    Mol Neurodegener; 2013 Aug; 8():28. PubMed ID: 23941283
    [TBL] [Abstract][Full Text] [Related]  

  • 29. AMPK Signalling and Defective Energy Metabolism in Amyotrophic Lateral Sclerosis.
    Perera ND; Turner BJ
    Neurochem Res; 2016 Mar; 41(3):544-53. PubMed ID: 26202426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Defective mitochondrial dynamics is an early event in skeletal muscle of an amyotrophic lateral sclerosis mouse model.
    Luo G; Yi J; Ma C; Xiao Y; Yi F; Yu T; Zhou J
    PLoS One; 2013; 8(12):e82112. PubMed ID: 24324755
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of the Mitochondrial Aerobic Metabolism in the Pre- and Perisynaptic Districts of the SOD1
    Ravera S; Bonifacino T; Bartolucci M; Milanese M; Gallia E; Provenzano F; Cortese K; Panfoli I; Bonanno G
    Mol Neurobiol; 2018 Dec; 55(12):9220-9233. PubMed ID: 29656361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Skeletal Muscle Satellite Cells, Mitochondria, and MicroRNAs: Their Involvement in the Pathogenesis of ALS.
    Tsitkanou S; Della Gatta PA; Russell AP
    Front Physiol; 2016; 7():403. PubMed ID: 27679581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Review: The role of mitochondria in the pathogenesis of amyotrophic lateral sclerosis.
    Duffy LM; Chapman AL; Shaw PJ; Grierson AJ
    Neuropathol Appl Neurobiol; 2011 Jun; 37(4):336-52. PubMed ID: 21299590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calcium dysregulation, mitochondrial pathology and protein aggregation in a culture model of amyotrophic lateral sclerosis: mechanistic relationship and differential sensitivity to intervention.
    Tradewell ML; Cooper LA; Minotti S; Durham HD
    Neurobiol Dis; 2011 Jun; 42(3):265-75. PubMed ID: 21296666
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic Dysfunctions in Amyotrophic Lateral Sclerosis Pathogenesis and Potential Metabolic Treatments.
    Tefera TW; Borges K
    Front Neurosci; 2016; 10():611. PubMed ID: 28119559
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amyotrophic lateral sclerosis: from current developments in the laboratory to clinical implications.
    Cozzolino M; Ferri A; Carrì MT
    Antioxid Redox Signal; 2008 Mar; 10(3):405-43. PubMed ID: 18370853
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mitochondrial dysfunction is a converging point of multiple pathological pathways in amyotrophic lateral sclerosis.
    Shi P; Wei Y; Zhang J; Gal J; Zhu H
    J Alzheimers Dis; 2010; 20 Suppl 2():S311-24. PubMed ID: 20463400
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SOD1 and mitochondria in ALS: a dangerous liaison.
    Carrì MT; Cozzolino M
    J Bioenerg Biomembr; 2011 Dec; 43(6):593-9. PubMed ID: 22081209
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Familial amyotrophic lateral sclerosis (ALS) in Japan associated with H46R mutation in Cu/Zn superoxide dismutase gene: a possible new subtype of familial ALS.
    Aoki M; Ogasawara M; Matsubara Y; Narisawa K; Nakamura S; Itoyama Y; Abe K
    J Neurol Sci; 1994 Oct; 126(1):77-83. PubMed ID: 7836951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The mitochondrial permeability transition pore: a molecular target for amyotrophic lateral sclerosis therapy.
    Martin LJ
    Biochim Biophys Acta; 2010 Jan; 1802(1):186-97. PubMed ID: 19651206
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.