These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 35323795)

  • 21. Chiral Photonic Liquid Crystal Films Derived from Cellulose Nanocrystals.
    Duan C; Cheng Z; Wang B; Zeng J; Xu J; Li J; Gao W; Chen K
    Small; 2021 Jul; 17(30):e2007306. PubMed ID: 34047461
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent advances in sustainable preparation of cellulose nanocrystals via solid acid hydrolysis: A mini-review.
    Wang Y; Liu H; Wang Q; An X; Ji X; Tian Z; Liu S; Yang G
    Int J Biol Macromol; 2023 Dec; 253(Pt 7):127353. PubMed ID: 37839592
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The emergence of hybrid cellulose nanomaterials as promising biomaterials.
    Las-Casas B; Dias IKR; Yupanqui-Mendoza SL; Pereira B; Costa GR; Rojas OJ; Arantes V
    Int J Biol Macromol; 2023 Oct; 250():126007. PubMed ID: 37524277
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation and Surface Functionalization of Carboxylated Cellulose Nanocrystals.
    Lam E; Hemraz UD
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34206698
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lignocellulosic Biomass Derived Functional Materials: Synthesis and Applications in Biomedical Engineering.
    Zhang L; Peng X; Zhong L; Chua W; Xiang Z; Sun R
    Curr Med Chem; 2019; 26(14):2456-2474. PubMed ID: 28925867
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Juncus rigidus high biomass and cellulose productivity under wastewater salinity stress - A paradigm shift to the valorization of RO reject water.
    Vyas KD; Singh A
    Sci Total Environ; 2024 Jul; 933():173076. PubMed ID: 38734100
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications.
    Xue Y; Mou Z; Xiao H
    Nanoscale; 2017 Oct; 9(39):14758-14781. PubMed ID: 28967940
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Advances in Biomedical Application of Nanocellulose-Based Materials: A Review.
    Yuan Q; Bian J; Ma MG
    Curr Med Chem; 2021; 28(40):8275-8295. PubMed ID: 33256574
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biotechnological innovations in nanocellulose production from waste biomass with a focus on pineapple waste.
    Sarangi PK; Srivastava RK; Sahoo UK; Singh AK; Parikh J; Bansod S; Parsai G; Luqman M; Shadangi KP; Diwan D; Lanterbecq D; Sharma M
    Chemosphere; 2024 Feb; 349():140833. PubMed ID: 38043620
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microalgal nanocellulose - opportunities for a circular bioeconomy.
    Ross IL; Shah S; Hankamer B; Amiralian N
    Trends Plant Sci; 2021 Sep; 26(9):924-939. PubMed ID: 34144878
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Towards sustainable production and utilization of plant-biomass-based nanomaterials: a review and analysis of recent developments.
    Zhu JY; Agarwal UP; Ciesielski PN; Himmel ME; Gao R; Deng Y; Morits M; Österberg M
    Biotechnol Biofuels; 2021 May; 14(1):114. PubMed ID: 33957955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A review on the emerging applications of cellulose, cellulose derivatives and nanocellulose in carbon capture.
    Ho NAD; Leo CP
    Environ Res; 2021 Jun; 197():111100. PubMed ID: 33812871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Towards the scalable isolation of cellulose nanocrystals from tunicates.
    Dunlop MJ; Clemons C; Reiner R; Sabo R; Agarwal UP; Bissessur R; Sojoudiasli H; Carreau PJ; Acharya B
    Sci Rep; 2020 Nov; 10(1):19090. PubMed ID: 33154467
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tuning the Physicochemical Properties of Cellulose Nanocrystals through an In Situ Oligosaccharide Surface Modification Method.
    Niinivaara E; Vanderfleet OM; Kontturi E; Cranston ED
    Biomacromolecules; 2021 Aug; 22(8):3284-3296. PubMed ID: 34260208
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Benchmarking Cellulose Nanocrystals Part II: New Industrially Produced Materials.
    Delepierre G; Vanderfleet OM; Niinivaara E; Zakani B; Cranston ED
    Langmuir; 2021 Jul; 37(28):8393-8409. PubMed ID: 34250804
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface coating of UF membranes to improve antifouling properties: A comparison study between cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs).
    Bai L; Liu Y; Ding A; Ren N; Li G; Liang H
    Chemosphere; 2019 Feb; 217():76-84. PubMed ID: 30414545
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multi-type cellulose nanocrystals from sugarcane bagasse and their nanohybrids constructed with polyhedral oligomeric silsesquioxane.
    Huang B; He H; Liu H; Zhang Y; Peng X; Wang B
    Carbohydr Polym; 2020 Jan; 227():115368. PubMed ID: 31590842
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The development of chiral nematic mesoporous materials.
    Kelly JA; Giese M; Shopsowitz KE; Hamad WY; MacLachlan MJ
    Acc Chem Res; 2014 Apr; 47(4):1088-96. PubMed ID: 24694253
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    Zhou S; Nyholm L; Strømme M; Wang Z
    Acc Chem Res; 2019 Aug; 52(8):2232-2243. PubMed ID: 31290643
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reductive Amination Reaction for the Functionalization of Cellulose Nanocrystals.
    Hassan Omar O; Giannelli R; Colaprico E; Capodieci L; Babudri F; Operamolla A
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.