These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35323798)

  • 1. Can Large-Scale Offshore Membrane Desalination Cost-Effectively and Ecologically Address Water Scarcity in the Middle East?
    Janowitz D; Groche S; Yüce S; Melin T; Wintgens T
    Membranes (Basel); 2022 Mar; 12(3):. PubMed ID: 35323798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Assessment of Renewable Energies in a Seawater Desalination Plant with Reverse Osmosis Membranes.
    Leon F; Ramos A
    Membranes (Basel); 2021 Nov; 11(11):. PubMed ID: 34832112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reverse osmosis desalination: water sources, technology, and today's challenges.
    Greenlee LF; Lawler DF; Freeman BD; Marrot B; Moulin P
    Water Res; 2009 May; 43(9):2317-48. PubMed ID: 19371922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The feasibility of solar-powered small-scale brackish water desalination units in a coastal aquifer prone to saltwater intrusion: A comparison between electrodialysis reversal and reverse osmosis.
    Hamdan H; Saidy M; Alameddine I; Al-Hindi M
    J Environ Manage; 2021 Jul; 290():112604. PubMed ID: 33957411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of Energy Efficiency, Operation Costs, Carbon Footprint and Ecological Footprint with Reverse Osmosis Membranes in Seawater Desalination Plants.
    Leon F; Ramos A; Perez-Baez SO
    Membranes (Basel); 2021 Oct; 11(10):. PubMed ID: 34677547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the Ecological Footprint and Carbon Footprint in a Reverse Osmosis Sea Water Desalination Plant.
    Leon F; Ramos-Martin A; Perez-Baez SO
    Membranes (Basel); 2021 May; 11(6):. PubMed ID: 34063998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Analysis of Conventional and Emerging Technologies for Seawater Desalination: Northern Chile as A Case Study.
    Saavedra A; Valdés H; Mahn A; Acosta O
    Membranes (Basel); 2021 Mar; 11(3):. PubMed ID: 33807870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation for the optimization of two conceptual 200,000 m
    Yusefi F; Zahedi MM; Ziyaadini M
    Appl Water Sci; 2021; 11(2):12. PubMed ID: 33462558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent progress in renewable energy based-desalination in the Middle East and North Africa MENA region.
    Sayed ET; Olabi AG; Elsaid K; Al Radi M; Alqadi R; Ali Abdelkareem M
    J Adv Res; 2023 Jun; 48():125-156. PubMed ID: 36108962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fouling, performance and cost analysis of membrane-based water desalination technologies: A critical review.
    Nthunya LN; Bopape MF; Mahlangu OT; Mamba BB; Van der Bruggen B; Quist-Jensen CA; Richards H
    J Environ Manage; 2022 Jan; 301():113922. PubMed ID: 34731960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Injection of desalination brine into the saline part of the coastal aquifer; environmental and hydrological implications.
    Stein S; Michael HA; Dugan B
    Water Res; 2021 Dec; 207():117820. PubMed ID: 34753091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Life-cycle cost analysis of a hybrid algae-based biological desalination - low pressure reverse osmosis system.
    Gao L; Liu G; Zamyadi A; Wang Q; Li M
    Water Res; 2021 May; 195():116957. PubMed ID: 33711745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental Performance of Small-Scale Seawater Reverse Osmosis Plant for Rural Area Water Supply.
    Abdul Ghani L; Ali N; Nazaran IS; Hanafiah MM
    Membranes (Basel); 2021 Jan; 11(1):. PubMed ID: 33419141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive analysis of a hybrid FO/crystallization/RO process for improving its economic feasibility to seawater desalination.
    Park K; Kim DY; Jang YH; Kim MG; Yang DR; Hong S
    Water Res; 2020 Mar; 171():115426. PubMed ID: 31887548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Augmenting water supply by combined desalination/water recycling methods: an economic assessment.
    Teusner A; Blandin G; Le-Clech P
    Environ Technol; 2017 Feb; 38(3):257-265. PubMed ID: 27189010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reverse Osmosis Membrane Zero Liquid Discharge for Agriculture Drainage Water Desalination: Technical, Economic, and Environmental Assessment.
    El Sayed MM; Abulnour AMG; Tewfik SR; Sorour MH; Hani HA; Shaalan HF
    Membranes (Basel); 2022 Sep; 12(10):. PubMed ID: 36295682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility analysis of wind and solar powered desalination plants: An application to islands.
    Borge-Diez D; García-Moya FJ; Cabrera-Santana P; Rosales-Asensio E
    Sci Total Environ; 2021 Apr; 764():142878. PubMed ID: 33757251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental sustainability assessment of seawater reverse osmosis brine valorization by means of electrodialysis with bipolar membranes.
    Herrero-Gonzalez M; Admon N; Dominguez-Ramos A; Ibañez R; Wolfson A; Irabien A
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):1256-1266. PubMed ID: 30919196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Commercial Pressure Retarded Osmosis Systems for Seawater Desalination Plants.
    Makabe R; Ueyama T; Sakai H; Tanioka A
    Membranes (Basel); 2021 Jan; 11(1):. PubMed ID: 33478037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Energy Requirements of a Photovoltaic-Thermal Powered Water Desalination Plant for the Middle East.
    Alqaed S; Mustafa J; Almehmadi FA
    Int J Environ Res Public Health; 2021 Jan; 18(3):. PubMed ID: 33498677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.