These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 35323805)

  • 1. Lithium Salt Catalyzed Ring-Opening Polymerized Solid-State Electrolyte with Comparable Ionic Conductivity and Better Interface Compatibility for Li-Ion Batteries.
    Zhang W; Yoon S; Jin L; Lim H; Jeon M; Jang H; Ahmed F; Kim W
    Membranes (Basel); 2022 Mar; 12(3):. PubMed ID: 35323805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyphosphazene-Based Anion-Anchored Polymer Electrolytes For All-Solid-State Lithium Metal Batteries.
    Johnson BR; Sankara Raman A; Narla A; Jhulki S; Chen L; Marder SR; Ramprasad R; Turcheniuk K; Yushin G
    ACS Omega; 2024 Apr; 9(13):15410-15420. PubMed ID: 38585116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulating the ionic conductivity and interfacial compatibility of polymer-in-dual-salt electrolytes enables extended-temperature quasi-solid metal batteries.
    Lin W; Chen D; Yu J
    J Colloid Interface Sci; 2024 Jul; 666():189-200. PubMed ID: 38593653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crosslinked Gel Polymer Electrolyte from Trimethylolpropane Triglycidyl Ether by In Situ Polymerization for Lithium-Ion Batteries.
    Jin L; Lim H; Bae W; Song S; Joo K; Jang H; Kim W
    Gels; 2024 Jan; 10(1):. PubMed ID: 38247763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A general strategy for all-solid-state batteries with agglomeration-free and high conductivity achieved by improving the interface compatibility of fillers and polymer matrix.
    Wang J; Ma X; Liu M; Wu Q; Guan X; Wang F; Liu H; Xu J
    J Colloid Interface Sci; 2024 Oct; 671():248-257. PubMed ID: 38810339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enabling High-Performance All-Solid-State Batteries via Guest Wrench in Zeolite Strategy.
    Chi X; Li M; Chen X; Xu J; Yin X; Li S; Jin Z; Luo Z; Wang X; Kong D; Han M; Xu JJ; Liu Z; Mei D; Wang J; Henkelman G; Yu J
    J Am Chem Soc; 2023 Nov; 145(44):24116-24125. PubMed ID: 37783464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New Quasi-Solid-State Li-SPAN Battery Enhanced by In Situ Thermally Polymerized Gel Polymer Electrolytes.
    Zhang M; Xie W; Liu M; Liu S; Wang W; Jin Z; Wang A; Qiu J; Zhao P; Shi Z
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):1578-1586. PubMed ID: 38118050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsically Safe Lithium Metal Batteries Enabled by Thermo-Electrochemical Compatible In Situ Polymerized Solid-State Electrolytes.
    Yang SJ; Yuan H; Yao N; Hu JK; Wang XL; Wen R; Liu J; Huang JQ
    Adv Mater; 2024 Jun; ():e2405086. PubMed ID: 38940367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Situ Polymerized Zwitterionic Copolymer Ionic Gel Electrolytes with High Performance for Lithium-Ion Batteries.
    Chen W; Hai F; Gao X; Guo J; Yi Y; Xue W; Tang W; Li M
    ACS Appl Mater Interfaces; 2024 Jul; 16(28):36696-36704. PubMed ID: 38958244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photo-Thermal Mediated Li-ion Transport for Solid-State Lithium Metal Batteries.
    Wang Q; Sun Q; Pu Y; Sun W; Lin C; Duan X; Ren X; Lu L
    Small; 2024 May; 20(22):e2309501. PubMed ID: 38109067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Constructing Robust and Highly Conductive Solid Electrolyte with Tailored Interfacial Chemistry for Durable Li Metal Batteries.
    Jin Y; Li Y; Lin R; Zhang X; Shuai Y; Xiong Y
    Small; 2024 May; 20(19):e2307942. PubMed ID: 38054774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Earth-Abundant Kaolinite Nanoplatelet Gel Electrolytes for Solid-State Lithium Metal Batteries.
    Thomas CM; Zeng D; Huang HC; Pham T; Torres-Castanedo CG; Bedzyk MJ; Dravid VP; Hersam MC
    ACS Appl Mater Interfaces; 2024 Jul; 16(27):34913-34922. PubMed ID: 38924489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ferroelectric BaTiO
    Wu L; Lv H; Zhang R; Ding P; Tang M; Liu S; Wang L; Liu F; Guo X; Yu H
    ACS Nano; 2024 Feb; ():. PubMed ID: 38314720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dry-Processable Polymer Electrolytes for Solid Manufactured Batteries.
    Yang J; Cao Z; Chen Y; Liu X; Xiang Y; Yuan Y; Xin C; Xia Y; Huang S; Qiang Z; Fu KK; Zhang J
    ACS Nano; 2023 Oct; 17(20):19903-19913. PubMed ID: 37801700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of Solid Polycationic Electrolyte to Enable Durable Chloride-Ion Batteries.
    Yang X; Fu Z; Han R; Lei Y; Wang S; Zhao X; Meng Y; Liu H; Zhou D; Aurbach D; Wang G
    Angew Chem Int Ed Engl; 2024 Jul; 63(29):e202405750. PubMed ID: 38660918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal stability analysis of nitrile additives in LiFSI for lithium-ion batteries: An accelerating rate calorimetry study.
    Ali M; Park S; Raza A; Han C; Lee H; Lee H; Lee Y; Doh C
    Heliyon; 2024 May; 10(9):e29397. PubMed ID: 38694025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Status and Prospect of Two-Dimensional Materials in Electrolytes for All-Solid-State Lithium Batteries.
    Lan X; Luo N; Li Z; Peng J; Cheng HM
    ACS Nano; 2024 Apr; 18(13):9285-9310. PubMed ID: 38522089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Performance Solid Polymer Electrolytes for Rechargeable Batteries: A Self-Catalyzed Strategy toward Facile Synthesis.
    Cui Y; Liang X; Chai J; Cui Z; Wang Q; He W; Liu X; Liu Z; Cui G; Feng J
    Adv Sci (Weinh); 2017 Nov; 4(11):1700174. PubMed ID: 29201612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tungsten and Boron Codoping toward High Ionic Conductivity and Stable Sodium Solid Electrolyte for All-Solid-State Sodium Batteries.
    Wang L; Liu G; Li Y; Weng W; Xin X; Yao X
    ACS Appl Mater Interfaces; 2024 Jan; 16(4):4847-4853. PubMed ID: 38241525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dominant Solvent-Separated Ion Pairs in Electrolytes Enable Superhigh Conductivity for Fast-Charging and Low-Temperature Lithium Ion Batteries.
    Chen X; Li Z; Zhao H; Li J; Li W; Han C; Zhang Y; Lu L; Li J; Qiu X
    ACS Nano; 2024 Mar; 18(11):8350-8359. PubMed ID: 38465598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.