These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35323814)

  • 1. Integration of Nanofiltration and Reverse Osmosis Technologies in Polyphenols Recovery Schemes from Winery and Olive Mill Wastes by Aqueous-Based Processing.
    Tapia-Quirós P; Montenegro-Landívar MF; Reig M; Vecino X; Saurina J; Granados M; Cortina JL
    Membranes (Basel); 2022 Mar; 12(3):. PubMed ID: 35323814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of membrane processes for the recovery and separation of polyphenols from winery and olive mill wastes using green solvent-based processing.
    Tapia-Quirós P; Montenegro-Landívar MF; Reig M; Vecino X; Saurina J; Granados M; Cortina JL
    J Environ Manage; 2022 Apr; 307():114555. PubMed ID: 35085965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of Polyphenols from Agri-Food By-Products: The Olive Oil and Winery Industries Cases.
    Tapia-Quirós P; Montenegro-Landívar MF; Reig M; Vecino X; Cortina JL; Saurina J; Granados M
    Foods; 2022 Jan; 11(3):. PubMed ID: 35159513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of Natural Polyphenols from Spinach and Orange By-Products by Pressure-Driven Membrane Processes.
    Montenegro-Landívar MF; Tapia-Quirós P; Vecino X; Reig M; Granados M; Farran A; Cortina JL; Saurina J; Valderrama C
    Membranes (Basel); 2022 Jun; 12(7):. PubMed ID: 35877872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A green approach to phenolic compounds recovery from olive mill and winery wastes.
    Tapia-Quirós P; Montenegro-Landívar MF; Vecino X; Alvarino T; Cortina JL; Saurina J; Granados M; Reig M
    Sci Total Environ; 2022 Aug; 835():155552. PubMed ID: 35489508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Olive Mill and Winery Wastes as Viable Sources of Bioactive Compounds: A Study on Polyphenols Recovery.
    Tapia-Quirós P; Montenegro-Landívar MF; Reig M; Vecino X; Alvarino T; Cortina JL; Saurina J; Granados M
    Antioxidants (Basel); 2020 Nov; 9(11):. PubMed ID: 33139671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Combination of Aqueous Extraction and Polymeric Membranes as a Sustainable Process for the Recovery of Polyphenols from Olive Mill Solid Wastes.
    Conidi C; Egea-Corbacho A; Cassano A
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31726794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment of Two-Phase Olive Mill Wastewater and Recovery of Phenolic Compounds Using Membrane Technology.
    Sygouni V; Pantziaros AG; Iakovides IC; Sfetsa E; Bogdou PI; Christoforou EA; Paraskeva CA
    Membranes (Basel); 2019 Feb; 9(2):. PubMed ID: 30764563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Valorization of olive pomace by a green integrated approach applying sustainable extraction and membrane-assisted concentration.
    Antónia Nunes M; Pawlowski S; Costa ASG; Alves RC; Oliveira MBPP; Velizarov S
    Sci Total Environ; 2019 Feb; 652():40-47. PubMed ID: 30352345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An investigation of desalination by nanofiltration, reverse osmosis and integrated (hybrid NF/RO) membranes employed in brackish water treatment.
    Talaeipour M; Nouri J; Hassani AH; Mahvi AH
    J Environ Health Sci Eng; 2017; 15():18. PubMed ID: 28736617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Olive Mill Wastewater Polyphenol-Enriched Fractions by Integrated Membrane Process: A Promising Source of Antioxidant, Hypolipidemic and Hypoglycaemic Compounds.
    Tundis R; Conidi C; Loizzo MR; Sicari V; Cassano A
    Antioxidants (Basel); 2020 Jul; 9(7):. PubMed ID: 32664218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of Membrane Technologies in Dairy Industry: An Overview.
    Reig M; Vecino X; Cortina JL
    Foods; 2021 Nov; 10(11):. PubMed ID: 34829049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxytyrosol recovery from olive pomace: a simple process using olive mill industrial equipment and membrane technology.
    Romeu MFC; Bernardo J; Daniel CI; Costa N; Crespo JG; Silva Pinto L; Nunes da Ponte M; Nunes AVM
    J Food Sci Technol; 2024 Jan; 61(1):161-168. PubMed ID: 38192711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental Study and Mathematical Modeling of a Nanofiltration Membrane System for the Recovery of Polyphenols from Wine Lees.
    López-Borrell A; López-Pérez MF; Cardona SC; Lora-García J
    Membranes (Basel); 2022 Feb; 12(2):. PubMed ID: 35207161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery of phenolic compounds from wine lees using green processing: Identifying target molecules and assessing membrane ultrafiltration performance.
    Mir-Cerdà A; Carretero I; Coves JR; Pedrouso A; Castro-Barros CM; Alvarino T; Cortina JL; Saurina J; Granados M; Sentellas S
    Sci Total Environ; 2023 Jan; 857(Pt 3):159623. PubMed ID: 36283524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining Ultrafiltration and Nanofiltration to Obtain a Concentrated Extract of Purified Polyphenols from Wet Olive Pomace.
    Sánchez-Arévalo CM; Pérez García-Serrano A; Vincent-Vela MC; Álvarez-Blanco S
    Membranes (Basel); 2023 Jan; 13(2):. PubMed ID: 36837622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated Membrane Process in Organic Media: Combining Organic Solvent Ultrafiltration, Nanofiltration, and Reverse Osmosis to Purify and Concentrate the Phenolic Compounds from Wet Olive Pomace.
    Sánchez-Arévalo CM; Aldegheri F; Vincent-Vela MC; Álvarez-Blanco S
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of different nanofiltration and reverse osmosis membranes for simultaneous removal of arsenic and boron from spent geothermal water.
    Jarma YA; Karaoğlu A; Tekin Ö; Baba A; Ökten HE; Tomaszewska B; Bostancı K; Arda M; Kabay N
    J Hazard Mater; 2021 Mar; 405():124129. PubMed ID: 33082019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents.
    Turan M; Ates A; Inanc B
    Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the hybrid system combining electrocoagulation, nanofiltration and reverse osmosis for biologically treated textile effluent: Treatment efficiency and membrane fouling.
    Güneş E; Gönder ZB
    J Environ Manage; 2021 Sep; 294():113042. PubMed ID: 34126531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.