These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 35323898)
1. A model-guided holistic review of exploiting natural variation of photosynthesis traits in crop improvement. Yin X; Gu J; Dingkuhn M; Struik PC J Exp Bot; 2022 May; 73(10):3173-3188. PubMed ID: 35323898 [TBL] [Abstract][Full Text] [Related]
2. Can exploiting natural genetic variation in leaf photosynthesis contribute to increasing rice productivity? A simulation analysis. Gu J; Yin X; Stomph TJ; Struik PC Plant Cell Environ; 2014 Jan; 37(1):22-34. PubMed ID: 23937619 [TBL] [Abstract][Full Text] [Related]
3. High-throughput characterization, correlation, and mapping of leaf photosynthetic and functional traits in the soybean (Glycine max) nested association mapping population. Montes CM; Fox C; Sanz-Sáez Á; Serbin SP; Kumagai E; Krause MD; Xavier A; Specht JE; Beavis WD; Bernacchi CJ; Diers BW; Ainsworth EA Genetics; 2022 May; 221(2):. PubMed ID: 35451475 [TBL] [Abstract][Full Text] [Related]
4. Phenotyping of field-grown wheat in the UK highlights contribution of light response of photosynthesis and flag leaf longevity to grain yield. Carmo-Silva E; Andralojc PJ; Scales JC; Driever SM; Mead A; Lawson T; Raines CA; Parry MAJ J Exp Bot; 2017 Jun; 68(13):3473-3486. PubMed ID: 28859373 [TBL] [Abstract][Full Text] [Related]
5. Identification of QTL underlying physiological and morphological traits of flag leaf in barley. Liu L; Sun G; Ren X; Li C; Sun D BMC Genet; 2015 Mar; 16():29. PubMed ID: 25887313 [TBL] [Abstract][Full Text] [Related]
6. Can increased leaf photosynthesis be converted into higher crop mass production? A simulation study for rice using the crop model GECROS. Yin X; Struik PC J Exp Bot; 2017 Apr; 68(9):2345-2360. PubMed ID: 28379522 [TBL] [Abstract][Full Text] [Related]
7. Selectable traits to increase crop photosynthesis and yield of grain crops. Richards RA J Exp Bot; 2000 Feb; 51 Spec No():447-58. PubMed ID: 10938853 [TBL] [Abstract][Full Text] [Related]
8. Variation in leaf photosynthetic capacity within plant canopies: optimization, structural, and physiological constraints and inefficiencies. Niinemets Ü Photosynth Res; 2023 Nov; 158(2):131-149. PubMed ID: 37615905 [TBL] [Abstract][Full Text] [Related]
9. Variation in key leaf photosynthetic traits across wheat wild relatives is accession dependent not species dependent. McAusland L; Vialet-Chabrand S; Jauregui I; Burridge A; Hubbart-Edwards S; Fryer MJ; King IP; King J; Pyke K; Edwards KJ; Carmo-Silva E; Lawson T; Murchie EH New Phytol; 2020 Dec; 228(6):1767-1780. PubMed ID: 32910841 [TBL] [Abstract][Full Text] [Related]
10. Avenues for genetic modification of radiation use efficiency in wheat. Reynolds MP; van Ginkel M; Ribaut JM J Exp Bot; 2000 Feb; 51 Spec No():459-73. PubMed ID: 10938854 [TBL] [Abstract][Full Text] [Related]
11. Improving crop yield and resilience through optimization of photosynthesis: panacea or pipe dream? Araus JL; Sanchez-Bragado R; Vicente R J Exp Bot; 2021 May; 72(11):3936-3955. PubMed ID: 33640973 [TBL] [Abstract][Full Text] [Related]
12. Genetics as a key to improving crop photosynthesis. Theeuwen TPJM; Logie LL; Harbinson J; Aarts MGM J Exp Bot; 2022 May; 73(10):3122-3137. PubMed ID: 35235648 [TBL] [Abstract][Full Text] [Related]
13. Contrasting leaf-scale photosynthetic low-light response and its temperature dependency are key to differences in crop-scale radiation use efficiency. Wu A; Truong SH; McCormick R; van Oosterom EJ; Messina CD; Cooper M; Hammer GL New Phytol; 2024 Mar; 241(6):2435-2447. PubMed ID: 38214462 [TBL] [Abstract][Full Text] [Related]
14. A new major QTL for flag leaf thickness in barley (Hordeum vulgare L.). Niu Y; Chen T; Zheng Z; Zhao C; Liu C; Jia J; Zhou M BMC Plant Biol; 2022 Jun; 22(1):305. PubMed ID: 35751018 [TBL] [Abstract][Full Text] [Related]
15. Leaf Rubisco turnover in a perennial ryegrass (Lolium perenne L.) mapping population: genetic variation, identification of associated QTL, and correlation with plant morphology and yield. Khaembah EN; Irving LJ; Thom ER; Faville MJ; Easton HS; Matthew C J Exp Bot; 2013 Mar; 64(5):1305-16. PubMed ID: 23505311 [TBL] [Abstract][Full Text] [Related]
16. Natural genetic variation in photosynthesis: an untapped resource to increase crop yield potential? Faralli M; Lawson T Plant J; 2020 Feb; 101(3):518-528. PubMed ID: 31625637 [TBL] [Abstract][Full Text] [Related]
17. Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species? Archontoulis SV; Yin X; Vos J; Danalatos NG; Struik PC J Exp Bot; 2012 Jan; 63(2):895-911. PubMed ID: 22021569 [TBL] [Abstract][Full Text] [Related]
18. Natural variation in photosynthetic capacity, growth, and yield in 64 field-grown wheat genotypes. Driever SM; Lawson T; Andralojc PJ; Raines CA; Parry MA J Exp Bot; 2014 Sep; 65(17):4959-73. PubMed ID: 24963002 [TBL] [Abstract][Full Text] [Related]
19. High photosynthesis rate in two wild rice species is driven by leaf anatomy mediating high Rubisco activity and electron transport rate. Mathan J; Singh A; Jathar V; Ranjan A J Exp Bot; 2021 Oct; 72(20):7119-7135. PubMed ID: 34185840 [TBL] [Abstract][Full Text] [Related]
20. QTL analysis for flag leaf characteristics and their relationships with yield and yield traits in rice. Yue B; Xue WY; Luo LJ; Xing YZ Yi Chuan Xue Bao; 2006 Sep; 33(9):824-32. PubMed ID: 16980129 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]