These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 35323900)

  • 1. Machine learning methods for prediction of cancer driver genes: a survey paper.
    Andrades R; Recamonde-Mendoza M
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35323900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LOTUS: A single- and multitask machine learning algorithm for the prediction of cancer driver genes.
    Collier O; Stoven V; Vert JP
    PLoS Comput Biol; 2019 Sep; 15(9):e1007381. PubMed ID: 31568528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Learning Classification and Structure-Functional Analysis of Cancer Mutations Reveal Unique Dynamic and Network Signatures of Driver Sites in Oncogenes and Tumor Suppressor Genes.
    Agajanian S; Odeyemi O; Bischoff N; Ratra S; Verkhivker GM
    J Chem Inf Model; 2018 Oct; 58(10):2131-2150. PubMed ID: 30253099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the evaluation of cancer driver genes.
    Tokheim CJ; Papadopoulos N; Kinzler KW; Vogelstein B; Karchin R
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14330-14335. PubMed ID: 27911828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ontology-based prediction of cancer driver genes.
    Althubaiti S; Karwath A; Dallol A; Noor A; Alkhayyat SS; Alwassia R; Mineta K; Gojobori T; Beggs AD; Schofield PN; Gkoutos GV; Hoehndorf R
    Sci Rep; 2019 Nov; 9(1):17405. PubMed ID: 31757986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CHASMplus Reveals the Scope of Somatic Missense Mutations Driving Human Cancers.
    Tokheim C; Karchin R
    Cell Syst; 2019 Jul; 9(1):9-23.e8. PubMed ID: 31202631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Multi-Omics Characteristics on Identification of Driver Genes Using Machine Learning Algorithms.
    Li F; Chu X; Dai L; Wang J; Liu J; Shang J
    Genes (Basel); 2022 Apr; 13(5):. PubMed ID: 35627101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DriverML: a machine learning algorithm for identifying driver genes in cancer sequencing studies.
    Han Y; Yang J; Qian X; Cheng WC; Liu SH; Hua X; Zhou L; Yang Y; Wu Q; Liu P; Lu Y
    Nucleic Acids Res; 2019 May; 47(8):e45. PubMed ID: 30773592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. InDEP: an interpretable machine learning approach to predict cancer driver genes from multi-omics data.
    Yang H; Liu Y; Yang Y; Li D; Wang Z
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37649392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An evolution-based machine learning to identify cancer type-specific driver mutations.
    Kim D; Ha D; Lee K; Lee H; Kim I; Kim S
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36575568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OncoVar: an integrated database and analysis platform for oncogenic driver variants in cancers.
    Wang T; Ruan S; Zhao X; Shi X; Teng H; Zhong J; You M; Xia K; Sun Z; Mao F
    Nucleic Acids Res; 2021 Jan; 49(D1):D1289-D1301. PubMed ID: 33179738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovering potential cancer driver genes by an integrated network-based approach.
    Shi K; Gao L; Wang B
    Mol Biosyst; 2016 Aug; 12(9):2921-31. PubMed ID: 27426053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QuaDMutNetEx: a method for detecting cancer driver genes with low mutation frequency.
    Bokhari Y; Alhareeri A; Arodz T
    BMC Bioinformatics; 2020 Mar; 21(1):122. PubMed ID: 32293263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning random forest for predicting oncosomatic variant NGS analysis.
    Pellegrino E; Jacques C; Beaufils N; Nanni I; Carlioz A; Metellus P; Ouafik L
    Sci Rep; 2021 Nov; 11(1):21820. PubMed ID: 34750410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating machine learning methodologies for identification of cancer driver genes.
    Malebary SJ; Khan YD
    Sci Rep; 2021 Jun; 11(1):12281. PubMed ID: 34112883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A systematic view of computational methods for identifying driver genes based on somatic mutation data.
    Kan Y; Jiang L; Tang J; Guo Y; Guo F
    Brief Funct Genomics; 2021 Sep; 20(5):333-343. PubMed ID: 34312663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of constrained cancer driver genes based on mutation timing.
    Sakoparnig T; Fried P; Beerenwinkel N
    PLoS Comput Biol; 2015 Jan; 11(1):e1004027. PubMed ID: 25569148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of cancer driver genes and mutations: the potential of integrative computational frameworks.
    Nourbakhsh M; Degn K; Saksager A; Tiberti M; Papaleo E
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38261338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncovering driver genes in breast cancer through an innovative machine learning mutational analysis method.
    Taheri G; Habibi M
    Comput Biol Med; 2024 Mar; 171():108234. PubMed ID: 38430742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Approaches for the identification of driver mutations in cancer: A tutorial from a computational perspective.
    Cutigi JF; Evangelista AF; Simao A
    J Bioinform Comput Biol; 2020 Jun; 18(3):2050016. PubMed ID: 32698724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.