These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 35323900)

  • 21. Machine learning optimized DriverDetect software for high precision prediction of deleterious mutations in human cancers.
    Koh HYK; Lam UTF; Ban KH; Chen ES
    Sci Rep; 2024 Sep; 14(1):22618. PubMed ID: 39349509
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Individualized discovery of rare cancer drivers in global network context.
    Petrov I; Alexeyenko A
    Elife; 2022 May; 11():. PubMed ID: 35593700
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes.
    Lu X; Li X; Liu P; Qian X; Miao Q; Peng S
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Machine Learning Applications in Cancer Genome Medicine].
    Tsuji S; Aburatani H
    Gan To Kagaku Ryoho; 2019 Mar; 46(3):423-426. PubMed ID: 30914576
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identifying driver mutations from sequencing data of heterogeneous tumors in the era of personalized genome sequencing.
    Zhang J; Liu J; Sun J; Chen C; Foltz G; Lin B
    Brief Bioinform; 2014 Mar; 15(2):244-55. PubMed ID: 23818492
    [TBL] [Abstract][Full Text] [Related]  

  • 26. EPIMUTESTR: a nearest neighbor machine learning approach to predict cancer driver genes from the evolutionary action of coding variants.
    Parvandeh S; Donehower LA; Panagiotis K; Hsu TK; Asmussen JK; Lee K; Lichtarge O
    Nucleic Acids Res; 2022 Jul; 50(12):e70. PubMed ID: 35412634
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identifying Driver Interfaces Enriched for Somatic Missense Mutations in Tumors.
    Ozturk K; Carter H
    Methods Mol Biol; 2019; 1907():51-72. PubMed ID: 30542990
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational methods for cancer driver discovery: A survey.
    Pham VVH; Liu L; Bracken C; Goodall G; Li J; Le TD
    Theranostics; 2021; 11(11):5553-5568. PubMed ID: 33859763
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel network control model for identifying personalized driver genes in cancer.
    Guo WF; Zhang SW; Zeng T; Li Y; Gao J; Chen L
    PLoS Comput Biol; 2019 Nov; 15(11):e1007520. PubMed ID: 31765387
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In silico saturation mutagenesis of cancer genes.
    Muiños F; Martínez-Jiménez F; Pich O; Gonzalez-Perez A; Lopez-Bigas N
    Nature; 2021 Aug; 596(7872):428-432. PubMed ID: 34321661
    [TBL] [Abstract][Full Text] [Related]  

  • 31. deepDriver: Predicting Cancer Driver Genes Based on Somatic Mutations Using Deep Convolutional Neural Networks.
    Luo P; Ding Y; Lei X; Wu FX
    Front Genet; 2019; 10():13. PubMed ID: 30761181
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A compendium of mutational cancer driver genes.
    Martínez-Jiménez F; Muiños F; Sentís I; Deu-Pons J; Reyes-Salazar I; Arnedo-Pac C; Mularoni L; Pich O; Bonet J; Kranas H; Gonzalez-Perez A; Lopez-Bigas N
    Nat Rev Cancer; 2020 Oct; 20(10):555-572. PubMed ID: 32778778
    [TBL] [Abstract][Full Text] [Related]  

  • 33. De novo discovery of mutated driver pathways in cancer.
    Vandin F; Upfal E; Raphael BJ
    Genome Res; 2012 Feb; 22(2):375-85. PubMed ID: 21653252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comprehensive evaluation of computational methods for predicting cancer driver genes.
    Shi X; Teng H; Shi L; Bi W; Wei W; Mao F; Sun Z
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35037014
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimating the Frequency of Single Point Driver Mutations across Common Solid Tumours.
    Darbyshire M; du Toit Z; Rogers MF; Gaunt TR; Campbell C
    Sci Rep; 2019 Sep; 9(1):13452. PubMed ID: 31530827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of Cancer Driver Genes from a Custom Set of Next Generation Sequencing Data.
    Liu SH; Cheng WC
    Methods Mol Biol; 2019; 1907():19-36. PubMed ID: 30542988
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advances in computational methods for identifying cancer driver genes.
    Wang Y; Zhou B; Ru J; Meng X; Wang Y; Liu W
    Math Biosci Eng; 2023 Dec; 20(12):21643-21669. PubMed ID: 38124614
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Understanding oncogenicity of cancer driver genes and mutations in the cancer genomics era.
    Porta-Pardo E; Valencia A; Godzik A
    FEBS Lett; 2020 Dec; 594(24):4233-4246. PubMed ID: 32239503
    [TBL] [Abstract][Full Text] [Related]  

  • 40. C
    Zhu CY; Zhou C; Chen YQ; Shen AZ; Guo ZM; Yang ZY; Ye XY; Qu S; Wei J; Liu Q
    Genomics Proteomics Bioinformatics; 2019 Jun; 17(3):311-318. PubMed ID: 31465854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.