BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 35324160)

  • 41. Three-Dimensional Printable Flexible Piezoelectric Composites with Energy Harvesting Features.
    Aradoaei M; Ciobanu RC; Schreiner C; Paulet M; Caramitu AR; Pintea J; Baibarac M
    Polymers (Basel); 2023 May; 15(11):. PubMed ID: 37299346
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Boosting the Piezoelectric Response and Interfacial Compatibility in Flexible Piezoelectric Composites via DET-Doping BT Nanoparticles.
    Liu L; Zhang H; Zhou S; Du C; Liu M; Zhang Y
    Polymers (Basel); 2024 Mar; 16(6):. PubMed ID: 38543349
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Flexible Nanogenerator from Electrospun PVDF-Polycarbazole Nanofiber Membranes for Human Motion Energy-Harvesting Device Applications.
    Sengupta A; Das S; Dasgupta S; Sengupta P; Datta P
    ACS Biomater Sci Eng; 2021 Apr; 7(4):1673-1685. PubMed ID: 33683096
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 3D-Printing Piezoelectric Composite with Honeycomb Structure for Ultrasonic Devices.
    Zeng Y; Jiang L; Sun Y; Yang Y; Quan Y; Wei S; Lu G; Li R; Rong J; Chen Y; Zhou Q
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32717887
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A piezoelectric poly(vinylidene fluoride) tube featuring highly-sensitive and isotropic piezoelectric output for compression.
    Guo J; Nie M; Wang Q
    RSC Adv; 2020 Dec; 11(2):1182-1186. PubMed ID: 35423676
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bulk Ferroelectric Metamaterial with Enhanced Piezoelectric and Biomimetic Mechanical Properties from Additive Manufacturing.
    Li J; Yang F; Long Y; Dong Y; Wang Y; Wang X
    ACS Nano; 2021 Sep; 15(9):14903-14914. PubMed ID: 34405669
    [TBL] [Abstract][Full Text] [Related]  

  • 47. β-Phase Enhancement of Force Spun Composite Nanofibers for Sensing Applications.
    Aguirre-Corona RW; Del Ángel-Sánchez K; Ulloa-Castillo NA; Rodríguez-Salinas JJ; Olvera-Trejo D; Perales-Martínez IA; Martínez-Romero O; Elías-Zúñiga A
    Polymers (Basel); 2023 Aug; 15(17):. PubMed ID: 37688207
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Polyvinylidene Fluoride-Added Ceramic Powder Composite Near-Field Electrospinned Piezoelectric Fiber-Based Low-Frequency Dynamic Sensors.
    Pan CT; Wang SY; Yen CK; Kumar A; Kuo SW; Zheng JL; Wen ZH; Singh R; Singh SP; Khan MT; Chaudhary RK; Dai X; Chandra Kaushik A; Wei DQ; Shiue YL; Chang WH
    ACS Omega; 2020 Jul; 5(28):17090-17101. PubMed ID: 32715194
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biomimetic Porifera Skeletal Structure of Lead-Free Piezocomposite Energy Harvesters.
    Zhang Y; Sun H; Jeong CK
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35539-35546. PubMed ID: 30256607
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Current Achievements in Flexible Piezoelectric Nanogenerators Based on Barium Titanate.
    Okhay O; Tkach A
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985882
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Application of PVDF-Based Piezoelectric Patches in Energy Harvesting from Tire Deformation.
    Nguyen K; Bryant M; Song IH; You BH; Khaleghian S
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560363
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stretchable nanofibers of polyvinylidenefluoride (PVDF)/thermoplastic polyurethane (TPU) nanocomposite to support piezoelectric response via mechanical elasticity.
    Shehata N; Nair R; Boualayan R; Kandas I; Masrani A; Elnabawy E; Omran N; Gamal M; Hassanin AH
    Sci Rep; 2022 May; 12(1):8335. PubMed ID: 35585095
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Piezoelectric Energy Harvester Technologies: Synthesis, Mechanisms, and Multifunctional Applications.
    He Q; Briscoe J
    ACS Appl Mater Interfaces; 2024 Jun; 16(23):29491-29520. PubMed ID: 38739105
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Investigation of Electromechanical Properties on 3-D Printed Piezoelectric Composite Scaffold Structures.
    Sebastian T; Bach M; Geiger A; Lusiola T; Kozielski L; Clemens F
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683518
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 3D-Printed Piezoelectric Porous Bioactive Scaffolds and Clinical Ultrasonic Stimulation Can Help in Enhanced Bone Regeneration.
    Sikder P; Nagaraju P; Naganaboyina HPS
    Bioengineering (Basel); 2022 Nov; 9(11):. PubMed ID: 36421081
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 3D-printed polymer composite devices based on a ferroelectric chiral ammonium salt for high-performance piezoelectric energy harvesting.
    Sahoo S; Kothavade PA; Naphade DR; Torris A; Praveenkumar B; Zaręba JK; Anthopoulos TD; Shanmuganathan K; Boomishankar R
    Mater Horiz; 2023 Jul; 10(8):3153-3161. PubMed ID: 37227322
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Polymer-based Piezoelectric Vibration Energy Harvester with a 3D Meshed-Core Structure.
    Tsukamoto T; Umino Y; Hashikura K; Shiomi S; Yamada K; Suzuki T
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30855575
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of Piezoelectric Properties of Ag-NPs Doped PVDF Nanocomposite Fibres Membrane Prepared by Near Field Electrospinning.
    Pan CT; Dutt K; Yen CK; Kumar A; Kaushik AC; Wei DQ; Kumar A; Wen ZH; Hsu WH; Shiue YL
    Comb Chem High Throughput Screen; 2022; 25(4):720-729. PubMed ID: 33653246
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices.
    Zhou H; Zhang Y; Qiu Y; Wu H; Qin W; Liao Y; Yu Q; Cheng H
    Biosens Bioelectron; 2020 Nov; 168():112569. PubMed ID: 32905930
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanofibers-Based Piezoelectric Energy Harvester for Self-Powered Wearable Technologies.
    Mokhtari F; Shamshirsaz M; Latifi M; Foroughi J
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33207703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.