BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 35324179)

  • 21. l-Glutamate treatment enhances disease resistance of tomato fruit by inducing the expression of glutamate receptors and the accumulation of amino acids.
    Sun C; Jin L; Cai Y; Huang Y; Zheng X; Yu T
    Food Chem; 2019 Sep; 293():263-270. PubMed ID: 31151610
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ripening-regulated susceptibility of tomato fruit to Botrytis cinerea requires NOR but not RIN or ethylene.
    Cantu D; Blanco-Ulate B; Yang L; Labavitch JM; Bennett AB; Powell AL
    Plant Physiol; 2009 Jul; 150(3):1434-49. PubMed ID: 19465579
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fungicide Resistance in Botrytis cinerea Populations in California and its Influence on Control of Gray Mold on Stored Mandarin Fruit.
    Saito S; Xiao CL
    Plant Dis; 2018 Dec; 102(12):2545-2549. PubMed ID: 30328758
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Absence of the endo-beta-1,4-glucanases Cel1 and Cel2 reduces susceptibility to Botrytis cinerea in tomato.
    Flors V; Leyva Mde L; Vicedo B; Finiti I; Real MD; García-Agustín P; Bennett AB; González-Bosch C
    Plant J; 2007 Dec; 52(6):1027-40. PubMed ID: 17916112
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combined Use of
    Li TT; Zhang JD; Tang JQ; Liu ZC; Li YQ; Chen J; Zou LW
    Plant Dis; 2020 May; 104(5):1298-1304. PubMed ID: 32196417
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Root treatment with a vitamin K
    García-Machado FJ; García-García AL; Borges AA; Jiménez-Arias D
    Pest Manag Sci; 2022 Mar; 78(3):974-981. PubMed ID: 34738317
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selection and application of antifungal VOCs-producing yeasts as biocontrol agents of grey mould in fruits.
    Ruiz-Moyano S; Hernández A; Galvan AI; Córdoba MG; Casquete R; Serradilla MJ; Martín A
    Food Microbiol; 2020 Dec; 92():103556. PubMed ID: 32950150
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition activity of tomato endophyte Bacillus velezensis FQ-G3 against postharvest Botrytis cinerea.
    Feng B; Li P; Chen D; Ding C
    Folia Microbiol (Praha); 2024 Apr; 69(2):361-371. PubMed ID: 37436591
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Overexpression of the carbohydrate binding module from Solanum lycopersicum expansin 1 (Sl-EXP1) modifies tomato fruit firmness and Botrytis cinerea susceptibility.
    Perini MA; Sin IN; Villarreal NM; Marina M; Powell AL; Martínez GA; Civello PM
    Plant Physiol Biochem; 2017 Apr; 113():122-132. PubMed ID: 28196350
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biological control of Botrytis gray mould on tomato cultivated in greenhouse.
    Fiume F; Fiume G
    Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):897-908. PubMed ID: 17390837
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcriptomic Analysis of Resistant and Wild-Type
    Liu M; Peng J; Wang X; Zhang W; Zhou Y; Wang H; Li X; Yan J; Duan L
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674501
    [No Abstract]   [Full Text] [Related]  

  • 32. Anthocyanins double the shelf life of tomatoes by delaying overripening and reducing susceptibility to gray mold.
    Zhang Y; Butelli E; De Stefano R; Schoonbeek HJ; Magusin A; Pagliarani C; Wellner N; Hill L; Orzaez D; Granell A; Jones JD; Martin C
    Curr Biol; 2013 Jun; 23(12):1094-100. PubMed ID: 23707429
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibitory effect of lactoferrin against gray mould on tomato plants caused by Botrytis cinerea and possible mechanisms of action.
    Wang J; Xia XM; Wang HY; Li PP; Wang KY
    Int J Food Microbiol; 2013 Feb; 161(3):151-7. PubMed ID: 23333340
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accumulation of anthocyanins in tomato skin extends shelf life.
    Bassolino L; Zhang Y; Schoonbeek HJ; Kiferle C; Perata P; Martin C
    New Phytol; 2013 Nov; 200(3):650-655. PubMed ID: 24102530
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SlERF2 Is Associated with Methyl Jasmonate-Mediated Defense Response against Botrytis cinerea in Tomato Fruit.
    Yu W; Zhao R; Sheng J; Shen L
    J Agric Food Chem; 2018 Sep; 66(38):9923-9932. PubMed ID: 30192535
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cryptococcus laurentii controls gray mold of cherry tomato fruit via modulation of ethylene-associated immune responses.
    Tang Q; Zhu F; Cao X; Zheng X; Yu T; Lu L
    Food Chem; 2019 Apr; 278():240-247. PubMed ID: 30583368
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of Tomato Post-Harvest Properties: Fruit Color, Shelf Life, and Fungal Susceptibility.
    Thole V; Vain P; Yang RY; Almeida Barros da Silva J; Enfissi EMA; Nogueira M; Price EJ; Alseekh S; Fernie AR; Fraser PD; Hanson P; Martin C
    Curr Protoc Plant Biol; 2020 Jun; 5(2):e20108. PubMed ID: 32311842
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of SlMPK1, SlMPK2, and SlMPK3 Disrupts Defense Signaling Pathways and Enhances Tomato Fruit Susceptibility to Botrytis cinerea.
    Zheng Y; Yang Y; Liu C; Chen L; Sheng J; Shen L
    J Agric Food Chem; 2015 Jun; 63(22):5509-17. PubMed ID: 25910076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antifungal compound, methyl hippurate from Bacillus velezensis CE 100 and its inhibitory effect on growth of Botrytis cinerea.
    Maung CEH; Lee HG; Cho JY; Kim KY
    World J Microbiol Biotechnol; 2021 Aug; 37(9):159. PubMed ID: 34420104
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR/Cas9-Mediated
    Shu P; Li Z; Min D; Zhang X; Ai W; Li J; Zhou J; Li Z; Li F; Li X
    J Agric Food Chem; 2020 May; 68(20):5529-5538. PubMed ID: 32372640
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.