These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 35324779)

  • 1. Machine Learning for Shape Memory Graphene Nanoribbons and Applications in Biomedical Engineering.
    León C; Melnik R
    Bioengineering (Basel); 2022 Feb; 9(3):. PubMed ID: 35324779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accessing negative Poisson's ratio of graphene by machine learning interatomic potentials.
    Wu J; Zhou E; Qin Z; Zhang X; Qin G
    Nanotechnology; 2022 Apr; 33(27):. PubMed ID: 35276687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical graphene nanoribbon assemblies feature unique electronic and mechanical properties.
    Xu Z; Buehler MJ
    Nanotechnology; 2009 Sep; 20(37):375704. PubMed ID: 19706941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene nanoribbons: A promising nanomaterial for biomedical applications.
    Johnson AP; Gangadharappa HV; Pramod K
    J Control Release; 2020 Sep; 325():141-162. PubMed ID: 32622962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrically Induced Dirac Fermions in Graphene Nanoribbons.
    Pizzochero M; Tepliakov NV; Mostofi AA; Kaxiras E
    Nano Lett; 2021 Nov; 21(21):9332-9338. PubMed ID: 34714095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene Nanoribbons: Prospects of Application in Biomedicine and Toxicity.
    Zakharova OV; Mastalygina EE; Golokhvast KS; Gusev AA
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene.
    Lin Y; Connell JW
    Nanoscale; 2012 Nov; 4(22):6908-39. PubMed ID: 23023445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gaussian approximation potentials for accurate thermal properties of two-dimensional materials.
    Kocabaş T; Keçeli M; Vázquez-Mayagoitia Á; Sevik C
    Nanoscale; 2023 May; 15(19):8772-8780. PubMed ID: 37098822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility.
    Wei N; Xu L; Wang HQ; Zheng JC
    Nanotechnology; 2011 Mar; 22(10):105705. PubMed ID: 21289391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain-engineering of band gaps in piezoelectric boron nitride nanoribbons.
    Qi J; Qian X; Qi L; Feng J; Shi D; Li J
    Nano Lett; 2012 Mar; 12(3):1224-8. PubMed ID: 22364268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional shape memory graphene oxide.
    Chang Z; Deng J; Chandrakumara GG; Yan W; Liu JZ
    Nat Commun; 2016 Jun; 7():11972. PubMed ID: 27325441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-Principles Multiscale Modeling of Mechanical Properties in Graphene/Borophene Heterostructures Empowered by Machine-Learning Interatomic Potentials.
    Mortazavi B; Silani M; Podryabinkin EV; Rabczuk T; Zhuang X; Shapeev AV
    Adv Mater; 2021 Sep; 33(35):e2102807. PubMed ID: 34296779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic half-metallicity in modified graphene nanoribbons.
    Dutta S; Manna AK; Pati SK
    Phys Rev Lett; 2009 Mar; 102(9):096601. PubMed ID: 19392544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exciton-dominated optical response of ultra-narrow graphene nanoribbons.
    Denk R; Hohage M; Zeppenfeld P; Cai J; Pignedoli CA; Söde H; Fasel R; Feng X; Müllen K; Wang S; Prezzi D; Ferretti A; Ruini A; Molinari E; Ruffieux P
    Nat Commun; 2014 Jul; 5():4253. PubMed ID: 25001405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring fracture of H-BN and graphene by neural network force fields.
    Shi P; Xu Z
    J Phys Condens Matter; 2024 Jul; 36(41):. PubMed ID: 38925133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interface effects in hybrid hBN-graphene nanoribbons.
    Leon C; Costa M; Chico L; Latgé A
    Sci Rep; 2019 Mar; 9(1):3508. PubMed ID: 30837518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of quasi-free-standing bilayer graphene nanoribbons on SiC surfaces.
    Oliveira MH; Lopes JMJ; Schumann T; Galves LA; Ramsteiner M; Berlin K; Trampert A; Riechert H
    Nat Commun; 2015 Jul; 6():7632. PubMed ID: 26158645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boron-doped armchair germanene nanoribbons with a width of six atoms in an external field: a DFT study.
    Van Ngoc H; Trang TQ; Ha CV
    J Mol Model; 2022 Dec; 29(1):20. PubMed ID: 36565375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.