These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

715 related articles for article (PubMed ID: 35324787)

  • 1. Recent Advances in Biological Recycling of Polyethylene Terephthalate (PET) Plastic Wastes.
    Soong YV; Sobkowicz MJ; Xie D
    Bioengineering (Basel); 2022 Feb; 9(3):. PubMed ID: 35324787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances in the Chemobiological Upcycling of Polyethylene Terephthalate (PET) into Value-Added Chemicals.
    Mudondo J; Lee HS; Jeong Y; Kim TH; Kim S; Sung BH; Park SH; Park K; Cha HG; Yeon YJ; Kim HT
    J Microbiol Biotechnol; 2023 Jan; 33(1):1-14. PubMed ID: 36451300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recycling potential of post-consumer plastic packaging waste in Finland.
    Dahlbo H; Poliakova V; Mylläri V; Sahimaa O; Anderson R
    Waste Manag; 2018 Jan; 71():52-61. PubMed ID: 29097129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocatalytic recycling of polyethylene terephthalate plastic.
    Zimmermann W
    Philos Trans A Math Phys Eng Sci; 2020 Jul; 378(2176):20190273. PubMed ID: 32623985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic aspects of poly(ethylene terephthalate) recycling-toward enabling high quality sustainability decisions in waste management.
    Ghasemi MH; Neekzad N; Ajdari FB; Kowsari E; Ramakrishna S
    Environ Sci Pollut Res Int; 2021 Aug; 28(32):43074-43101. PubMed ID: 34146328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical Recycling of Packaging Plastics: A Review.
    Schyns ZOG; Shaver MP
    Macromol Rapid Commun; 2021 Feb; 42(3):e2000415. PubMed ID: 33000883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solutions and Integrated Strategies for the Control and Mitigation of Plastic and Microplastic Pollution.
    Prata JC; Silva ALP; da Costa JP; Mouneyrac C; Walker TR; Duarte AC; Rocha-Santos T
    Int J Environ Res Public Health; 2019 Jul; 16(13):. PubMed ID: 31284627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biobased de novo synthesis, upcycling, and recycling - the heartbeat toward a green and sustainable polyethylene terephthalate industry.
    Weiland F; Kohlstedt M; Wittmann C
    Curr Opin Biotechnol; 2024 Apr; 86():103079. PubMed ID: 38422776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Waste to Wealth: Chemical Recycling and Chemical Upcycling of Waste Plastics for a Great Future.
    Chen H; Wan K; Zhang Y; Wang Y
    ChemSusChem; 2021 Oct; 14(19):4123-4136. PubMed ID: 33998153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological Upcycling of Plastics Waste.
    Klauer RR; Hansen DA; Wu D; Monteiro LMO; Solomon KV; Blenner MA
    Annu Rev Chem Biomol Eng; 2024 Jul; 15(1):315-342. PubMed ID: 38621232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications of waste polyethylene terephthalate (PET) based nanostructured materials: A review.
    Bian X; Xia G; Xin JH; Jiang S; Ma K
    Chemosphere; 2024 Feb; 350():141076. PubMed ID: 38169200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in the biodegradation of polyethylene terephthalate with cutinase-like enzymes.
    Sui B; Wang T; Fang J; Hou Z; Shu T; Lu Z; Liu F; Zhu Y
    Front Microbiol; 2023; 14():1265139. PubMed ID: 37849919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation.
    Moog D; Schmitt J; Senger J; Zarzycki J; Rexer KH; Linne U; Erb T; Maier UG
    Microb Cell Fact; 2019 Oct; 18(1):171. PubMed ID: 31601227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plastics recycling: challenges and opportunities.
    Hopewell J; Dvorak R; Kosior E
    Philos Trans R Soc Lond B Biol Sci; 2009 Jul; 364(1526):2115-26. PubMed ID: 19528059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in nanotechnology-based modifications of micro/nano PET plastics for green energy applications.
    Anusha JR; Citarasu T; Uma G; Vimal S; Kamaraj C; Kumar V; Muzammil K; Mani Sankar M
    Chemosphere; 2024 Mar; 352():141417. PubMed ID: 38340992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial Genes for a Circular and Sustainable Bio-PET Economy.
    Salvador M; Abdulmutalib U; Gonzalez J; Kim J; Smith AA; Faulon JL; Wei R; Zimmermann W; Jimenez JI
    Genes (Basel); 2019 May; 10(5):. PubMed ID: 31100963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic flows of polyethylene terephthalate (PET) plastic in China.
    Chu J; Cai Y; Li C; Wang X; Liu Q; He M
    Waste Manag; 2021 Apr; 124():273-282. PubMed ID: 33639412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polydiketoenamines for a Circular Plastics Economy.
    Helms BA
    Acc Chem Res; 2022 Oct; 55(19):2753-2765. PubMed ID: 36108255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current biotechnologies on depolymerization of polyethylene terephthalate (PET) and repolymerization of reclaimed monomers from PET for bio-upcycling: A critical review.
    Kim NK; Lee SH; Park HD
    Bioresour Technol; 2022 Nov; 363():127931. PubMed ID: 36100185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An analytical review on revamping plastic waste management: exploring recycling, biodegradation, and the growing role of biobased plastics.
    Rajvanshi J; Sogani M; Tziouvaras G; Kumar A; Syed Z; Sonu K; Gupta NS; Sen H
    Environ Sci Pollut Res Int; 2024 Apr; ():. PubMed ID: 38627348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.