BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 35324799)

  • 1. Design by Nature: Emerging Applications of Native Liver Extracellular Matrix for Cholangiocyte Organoid-Based Regenerative Medicine.
    Willemse J; van der Laan LJW; de Jonge J; Verstegen MMA
    Bioengineering (Basel); 2022 Mar; 9(3):. PubMed ID: 35324799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogels derived from decellularized liver tissue support the growth and differentiation of cholangiocyte organoids.
    Willemse J; van Tienderen G; van Hengel E; Schurink I; van der Ven D; Kan Y; de Ruiter P; Rosmark O; Westergren-Thorsson G G; Schneeberger K; van der Eerden B; Roest H; Spee B; van der Laan L; de Jonge J; Verstegen M
    Biomaterials; 2022 May; 284():121473. PubMed ID: 35344800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholangiocyte organoids from human bile retain a local phenotype and can repopulate bile ducts in vitro.
    Roos FJM; Wu H; Willemse J; Lieshout R; Albarinos LAM; Kan YY; Poley JW; Bruno MJ; de Jonge J; Bártfai R; Marks H; IJzermans JNM; Verstegen MMA; van der Laan LJW
    Clin Transl Med; 2021 Dec; 11(12):e566. PubMed ID: 34954911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Bile Contains Cholangiocyte Organoid-Initiating Cells Which Expand as Functional Cholangiocytes in Non-canonical Wnt Stimulating Conditions.
    Roos FJM; Verstegen MMA; Muñoz Albarinos L; Roest HP; Poley JW; Tetteroo GWM; IJzermans JNM; van der Laan LJW
    Front Cell Dev Biol; 2020; 8():630492. PubMed ID: 33634107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organoids and regenerative hepatology.
    Jalan-Sakrikar N; Brevini T; Huebert RC; Sampaziotis F
    Hepatology; 2023 Jan; 77(1):305-322. PubMed ID: 35596930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver.
    Sampaziotis F; Muraro D; Tysoe OC; Sawiak S; Beach TE; Godfrey EM; Upponi SS; Brevini T; Wesley BT; Garcia-Bernardo J; Mahbubani K; Canu G; Gieseck R; Berntsen NL; Mulcahy VL; Crick K; Fear C; Robinson S; Swift L; Gambardella L; Bargehr J; Ortmann D; Brown SE; Osnato A; Murphy MP; Corbett G; Gelson WTH; Mells GF; Humphreys P; Davies SE; Amin I; Gibbs P; Sinha S; Teichmann SA; Butler AJ; See TC; Melum E; Watson CJE; Saeb-Parsy K; Vallier L
    Science; 2021 Feb; 371(6531):839-846. PubMed ID: 33602855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels.
    Mollica PA; Booth-Creech EN; Reid JA; Zamponi M; Sullivan SM; Palmer XL; Sachs PC; Bruno RD
    Acta Biomater; 2019 Sep; 95():201-213. PubMed ID: 31233891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bovine and human endometrium-derived hydrogels support organoid culture from healthy and cancerous tissues.
    Jamaluddin MFB; Ghosh A; Ingle A; Mohammed R; Ali A; Bahrami M; Kaiko G; Gibb Z; Filipe EC; Cox TR; Boulton A; O'Sullivan R; Ius Y; Karakoti A; Vinu A; Nahar P; Jaaback K; Bansal V; Tanwar PS
    Proc Natl Acad Sci U S A; 2022 Nov; 119(44):e2208040119. PubMed ID: 36279452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioactive and chemically defined hydrogels with tunable stiffness guide cerebral organoid formation and modulate multi-omics plasticity in cerebral organoids.
    Isik M; Okesola BO; Eylem CC; Kocak E; Nemutlu E; D'Este M; Mata A; Derkus B
    Acta Biomater; 2023 Nov; 171():223-238. PubMed ID: 37793600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture.
    Giobbe GG; Crowley C; Luni C; Campinoti S; Khedr M; Kretzschmar K; De Santis MM; Zambaiti E; Michielin F; Meran L; Hu Q; van Son G; Urbani L; Manfredi A; Giomo M; Eaton S; Cacchiarelli D; Li VSW; Clevers H; Bonfanti P; Elvassore N; De Coppi P
    Nat Commun; 2019 Dec; 10(1):5658. PubMed ID: 31827102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human branching cholangiocyte organoids recapitulate functional bile duct formation.
    Roos FJM; van Tienderen GS; Wu H; Bordeu I; Vinke D; Albarinos LM; Monfils K; Niesten S; Smits R; Willemse J; Rosmark O; Westergren-Thorsson G; Kunz DJ; de Wit M; French PJ; Vallier L; IJzermans JNM; Bartfai R; Marks H; Simons BD; van Royen ME; Verstegen MMA; van der Laan LJW
    Cell Stem Cell; 2022 May; 29(5):776-794.e13. PubMed ID: 35523140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel model of injured liver ductal organoids to investigate cholangiocyte apoptosis with relevance to biliary atresia.
    Chusilp S; Lee C; Li B; Lee D; Yamoto M; Ganji N; Vejchapipat P; Pierro A
    Pediatr Surg Int; 2020 Dec; 36(12):1471-1479. PubMed ID: 33084932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viscoelastic Notch Signaling Hydrogel Induces Liver Bile Duct Organoid Growth and Morphogenesis.
    Rizwan M; Ling C; Guo C; Liu T; Jiang JX; Bear CE; Ogawa S; Shoichet MS
    Adv Healthc Mater; 2022 Dec; 11(23):e2200880. PubMed ID: 36180392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suspended hydrogel culture as a method to scale up intestinal organoids.
    Co JY; Klein JA; Kang S; Homan KA
    Sci Rep; 2023 Jun; 13(1):10412. PubMed ID: 37369732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular matrix drives tumor organoids toward desmoplastic matrix deposition and mesenchymal transition.
    van Tienderen GS; Rosmark O; Lieshout R; Willemse J; de Weijer F; Elowsson Rendin L; Westergren-Thorsson G; Doukas M; Groot Koerkamp B; van Royen ME; van der Laan LJ; Verstegen MM
    Acta Biomater; 2023 Mar; 158():115-131. PubMed ID: 36427688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hepatobiliary Organoids and Their Applications for Studies of Liver Health and Disease: Are We There Yet?
    Shiota J; Samuelson LC; Razumilava N
    Hepatology; 2021 Oct; 74(4):2251-2263. PubMed ID: 33638203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasma-derived extracellular matrix for xenofree and cost-effective organoid modeling for hepatocellular carcinoma.
    El-Derby AM; Khedr MA; Ghoneim NI; Gabr MM; Khater SM; El-Badri N
    J Transl Med; 2024 May; 22(1):487. PubMed ID: 38773585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomaterials for intestinal organoid technology and personalized disease modeling.
    Hirota A; AlMusawi S; Nateri AS; Ordóñez-Morán P; Imajo M
    Acta Biomater; 2021 Sep; 132():272-287. PubMed ID: 34023456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liver ductal organoids reconstruct intrahepatic biliary trees in decellularized liver grafts.
    Tomofuji K; Fukumitsu K; Kondo J; Horie H; Makino K; Wakama S; Ito T; Oshima Y; Ogiso S; Ishii T; Inoue M; Hatano E
    Biomaterials; 2022 Aug; 287():121614. PubMed ID: 35688027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-Functionalized Poly(ethylene glycol) Hydrogels as Scaffolds for Monolayer Organoid Culture.
    Wilson RL; Swaminathan G; Ettayebi K; Bomidi C; Zeng XL; Blutt SE; Estes MK; Grande-Allen KJ
    Tissue Eng Part C Methods; 2021 Jan; 27(1):12-23. PubMed ID: 33334213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.