These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35325004)

  • 21. Far eastern curlew and whimbrel prefer flying low - wind support and good visibility appear only secondary factors in determining migratory flight altitude.
    Galtbalt B; Lilleyman A; Coleman JT; Cheng C; Ma Z; Rogers DI; Woodworth BK; Fuller RA; Garnett ST; Klaassen M
    Mov Ecol; 2021 Jun; 9(1):32. PubMed ID: 34120657
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of optic flow pooling in insect flight control in cluttered environments.
    Lecoeur J; Dacke M; Floreano D; Baird E
    Sci Rep; 2019 May; 9(1):7707. PubMed ID: 31118454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bumblebees perceive the spatial layout of their environment in relation to their body size and form to minimize inflight collisions.
    Ravi S; Siesenop T; Bertrand O; Li L; Doussot C; Warren WH; Combes SA; Egelhaaf M
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31494-31499. PubMed ID: 33229535
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Honeybee flight metabolic rate: does it depend upon air temperature?
    Woods WA; Heinrich B; Stevenson RD
    J Exp Biol; 2005 Mar; 208(Pt 6):1161-73. PubMed ID: 15767315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A biomimetic vision-based hovercraft accounts for bees' complex behaviour in various corridors.
    Roubieu FL; Serres JR; Colonnier F; Franceschini N; Viollet S; Ruffier F
    Bioinspir Biomim; 2014 Sep; 9(3):036003. PubMed ID: 24615558
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interactive effects of body mass changes and species-specific morphology on flight behavior of chick-rearing Antarctic fulmarine petrels under diurnal wind patterns.
    Dehnhard N; Klekociuk AR; Emmerson L
    Ecol Evol; 2021 May; 11(9):4972-4991. PubMed ID: 33976863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Floor and ceiling mirror configurations to study altitude control in honeybees.
    Serres JR; Morice AHP; Blary C; Miot R; Montagne G; Ruffier F
    Biol Lett; 2022 Mar; 18(3):20210534. PubMed ID: 35317623
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Orientation in high-flying migrant insects in relation to flows: mechanisms and strategies.
    Reynolds AM; Reynolds DR; Sane SP; Hu G; Chapman JW
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528782
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Honeybee navigation en route to the goal: visual flight control and odometry.
    Srinivasan M; Zhang S; Lehrer M; Collett T
    J Exp Biol; 1996; 199(Pt 1):237-44. PubMed ID: 9317712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An experimental setup for decoupling optical invariants in honeybees' altitude control.
    Berger Dauxère A; Montagne G; Serres JR
    J Insect Physiol; 2022; 143():104451. PubMed ID: 36374736
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automated telemetry reveals age specific differences in flight duration and speed are driven by wind conditions in a migratory songbird.
    Mitchell GW; Woodworth BK; Taylor PD; Norris DR
    Mov Ecol; 2015; 3(1):19. PubMed ID: 26279850
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Altitude control in honeybees: joint vision-based learning and guidance.
    Portelli G; Serres JR; Ruffier F
    Sci Rep; 2017 Aug; 7(1):9231. PubMed ID: 28835634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Foraging at the edge of the world: low-altitude, high-speed manoeuvering in barn swallows.
    Warrick DR; Hedrick TL; Biewener AA; Crandell KE; Tobalske BW
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bats use topography and nocturnal updrafts to fly high and fast.
    O'Mara MT; Amorim F; Scacco M; McCracken GF; Safi K; Mata V; Tomé R; Swartz S; Wikelski M; Beja P; Rebelo H; Dechmann DKN
    Curr Biol; 2021 Mar; 31(6):1311-1316.e4. PubMed ID: 33545045
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Visual guidance of honeybees approaching a vertical landing surface.
    Goyal P; Baird E; Srinivasan MV; Muijres FT
    J Exp Biol; 2023 Sep; 226(17):. PubMed ID: 37589414
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flight speed and body mass of nectar-feeding bats (Glossophaginae) during foraging.
    Winter Y
    J Exp Biol; 1999 Jul; 202(Pt 14):1917-30. PubMed ID: 10377273
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rules to fly by: pigeons navigating horizontal obstacles limit steering by selecting gaps most aligned to their flight direction.
    Ros IG; Bhagavatula PS; Lin HT; Biewener AA
    Interface Focus; 2017 Feb; 7(1):20160093. PubMed ID: 28163883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fragmentation of nest and foraging habitat affects time budgets of solitary bees, their fitness and pollination services, depending on traits: Results from an individual-based model.
    Everaars J; Settele J; Dormann CF
    PLoS One; 2018; 13(2):e0188269. PubMed ID: 29444076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Obstacle avoidance in bumblebees is robust to changes in light intensity.
    Baird E
    Anim Cogn; 2020 Nov; 23(6):1081-1086. PubMed ID: 32772201
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Environmental and genetic influences on flight metabolic rate in the honey bee, Apis mellifera.
    Harrison JF; Fewell JH
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Oct; 133(2):323-33. PubMed ID: 12208303
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.