These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35325023)

  • 1. Leaf surface traits contributing to wettability, water interception and uptake of above-ground water sources in shrubs of Patagonian arid ecosystems.
    Cavallaro A; Carbonell-Silletta L; Burek A; Goldstein G; Scholz FG; Bucci SJ
    Ann Bot; 2022 Sep; 130(3):409-418. PubMed ID: 35325023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Foliar water uptake in arid ecosystems: seasonal variability and ecophysiological consequences.
    Cavallaro A; Carbonell Silleta L; Pereyra DA; Goldstein G; Scholz FG; Bucci SJ
    Oecologia; 2020 Jun; 193(2):337-348. PubMed ID: 32474806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variation in leaf wettability traits along a tropical montane elevation gradient.
    Goldsmith GR; Bentley LP; Shenkin A; Salinas N; Blonder B; Martin RE; Castro-Ccossco R; Chambi-Porroa P; Diaz S; Enquist BJ; Asner GP; Malhi Y
    New Phytol; 2017 May; 214(3):989-1001. PubMed ID: 27463359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Foliar water uptake: a common water acquisition strategy for plants of the redwood forest.
    Limm EB; Simonin KA; Bothman AG; Dawson TE
    Oecologia; 2009 Sep; 161(3):449-59. PubMed ID: 19585154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leaf wettability decreases along an extreme altitudinal gradient.
    Aryal B; Neuner G
    Oecologia; 2010 Jan; 162(1):1-9. PubMed ID: 19727830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How do leaf wetting events affect gas exchange and leaf lifespan of plants from seasonally dry tropical vegetation?
    Holanda AER; Souza BC; Carvalho ECD; Oliveira RS; Martins FR; Muniz CR; Costa RC; Soares AA
    Plant Biol (Stuttg); 2019 Nov; 21(6):1097-1109. PubMed ID: 31251437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wettability of soybean (Glycine max L.) leaves by foliar sprays with respect to developmental changes.
    Puente DW; Baur P
    Pest Manag Sci; 2011 Jul; 67(7):798-806. PubMed ID: 21413140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributing factors in foliar uptake of dissolved inorganic nitrogen at leaf level.
    Wuyts K; Adriaenssens S; Staelens J; Wuytack T; Van Wittenberghe S; Boeckx P; Samson R; Verheyen K
    Sci Total Environ; 2015 Feb; 505():992-1002. PubMed ID: 25461099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soil water availability and rooting depth as determinants of hydraulic architecture of Patagonian woody species.
    Bucci SJ; Scholz FG; Goldstein G; Meinzer FC; Arce ME
    Oecologia; 2009 Jul; 160(4):631-41. PubMed ID: 19330355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in northern Venezuela: VI. Water relations and gas exchange of mangroves.
    Smith JAC; Popp M; Lüttge U; Cram WJ; Diaz M; Griffiths H; Lee HSJ; Medina E; Schäfer C; Stimmel KH; Thonke B
    New Phytol; 1989 Feb; 111(2):293-307. PubMed ID: 33874250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilized atmospheric particulate matter on leaves of 96 urban plant species.
    Muhammad S; Wuyts K; Samson R
    Environ Sci Pollut Res Int; 2020 Oct; 27(29):36920-36938. PubMed ID: 32572747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of leaf roughness, surface free energy and work of adhesion on leaf water drop adhesion.
    Wang H; Shi H; Li Y; Wang Y
    PLoS One; 2014; 9(9):e107062. PubMed ID: 25198355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High potential for foliar water uptake in early stages of leaf development of three woody angiosperms.
    Losso A; Dämon B; Hacke U; Mayr S
    Physiol Plant; 2023; 175(4):e13961. PubMed ID: 37341178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drought decreases water storage capacity of two arboreal epiphytes with differing ecohydrological traits.
    Moore AFP; Antoine J; Bedoya LI; Medina A; Buck CS; Van Stan JT; Gotsch SG
    Sci Total Environ; 2023 Oct; 894():164791. PubMed ID: 37308022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating rainfall interception loss of three dominant shrub species in an oasis-desert ecotone using in situ measurements and the revised Gash analytical model.
    Zhao W; Ji X; Jin B; Du Z; Zhang J; Jiao D; Yang Q; Zhao L
    J Environ Manage; 2023 Dec; 347():119091. PubMed ID: 37793288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The incidence and implications of clouds for cloud forest plant water relations.
    Goldsmith GR; Matzke NJ; Dawson TE
    Ecol Lett; 2013 Mar; 16(3):307-14. PubMed ID: 23216898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential use of large summer rainfall events by shrubs and grasses: a manipulative experiment in the Patagonian steppe.
    Golluscio RA; Sala OE; Lauenroth WK
    Oecologia; 1998 Jun; 115(1-2):17-25. PubMed ID: 28308449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vulnerability of native savanna trees and exotic Khaya senegalensis to seasonal drought.
    Arndt SK; Sanders GJ; Bristow M; Hutley LB; Beringer J; Livesley SJ
    Tree Physiol; 2015 Jul; 35(7):783-91. PubMed ID: 25934988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaf wettability is the main driver for foliar P uptake in P-deficient maize.
    Henningsen JN; Görlach BM; Quintero JM; Garrido RR; Mühling KH; Fernández V
    Plant Physiol Biochem; 2023 Dec; 205():108170. PubMed ID: 38008008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant traits mediate foliar uptake of deposited nitrogen by mature woody plants.
    Wang X; Li J; Ge H; Pan S; Li P; Guo L; Yang L; Peng Z; Wang B; Wang Z; Wang C; Liu L
    Plant Cell Environ; 2024 Aug; ():. PubMed ID: 39101480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.