These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 35325193)

  • 1. Nuclear receptor activation shapes spatial genome organization essential for gene expression control: lessons learned from the vitamin D receptor.
    Warwick T; Schulz MH; Gilsbach R; Brandes RP; Seuter S
    Nucleic Acids Res; 2022 Apr; 50(7):3745-3763. PubMed ID: 35325193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vitamin D-dependent chromatin association of CTCF in human monocytes.
    Neme A; Seuter S; Carlberg C
    Biochim Biophys Acta; 2016 Nov; 1859(11):1380-1388. PubMed ID: 27569350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular endocrinology of vitamin D on the epigenome level.
    Carlberg C
    Mol Cell Endocrinol; 2017 Sep; 453():14-21. PubMed ID: 28315703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of 1α,25-dihydroxyvitamin D3-dependent chromatin accessibility of early vitamin D receptor target genes.
    Seuter S; Pehkonen P; Heikkinen S; Carlberg C
    Biochim Biophys Acta; 2013 Dec; 1829(12):1266-75. PubMed ID: 24185200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential gene regulation by a synthetic vitamin D receptor ligand and active vitamin D in human cells.
    Iwaki M; Kanemoto Y; Sawada T; Nojiri K; Kurokawa T; Tsutsumi R; Nagasawa K; Kato S
    PLoS One; 2023; 18(12):e0295288. PubMed ID: 38091304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenome-wide effects of vitamin D and their impact on the transcriptome of human monocytes involve CTCF.
    Seuter S; Neme A; Carlberg C
    Nucleic Acids Res; 2016 May; 44(9):4090-104. PubMed ID: 26715761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The human peroxisome proliferator-activated receptor delta gene is a primary target of 1alpha,25-dihydroxyvitamin D3 and its nuclear receptor.
    Dunlop TW; Väisänen S; Frank C; Molnár F; Sinkkonen L; Carlberg C
    J Mol Biol; 2005 Jun; 349(2):248-60. PubMed ID: 15890193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The transcriptional regulator BCL6 participates in the secondary gene regulatory response to vitamin D.
    Nurminen V; Neme A; Ryynänen J; Heikkinen S; Seuter S; Carlberg C
    Biochim Biophys Acta; 2015 Mar; 1849(3):300-8. PubMed ID: 25482012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The vitamin D hormone and its nuclear receptor: molecular actions and disease states.
    Haussler MR; Haussler CA; Jurutka PW; Thompson PD; Hsieh JC; Remus LS; Selznick SH; Whitfield GK
    J Endocrinol; 1997 Sep; 154 Suppl():S57-73. PubMed ID: 9379138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vitamin D Signaling in the Context of Innate Immunity: Focus on Human Monocytes.
    Carlberg C
    Front Immunol; 2019; 10():2211. PubMed ID: 31572402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of chromatin organization of vitamin D target genes.
    Carlberg C; Dunlop TW
    Anticancer Res; 2006; 26(4A):2637-45. PubMed ID: 16886674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for 1,25-dihydroxyvitamin D3-independent transactivation by the vitamin D receptor: uncoupling the receptor and ligand in keratinocytes.
    Ellison TI; Eckert RL; MacDonald PN
    J Biol Chem; 2007 Apr; 282(15):10953-62. PubMed ID: 17310066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 1,25-Dihydroxyvitamin D3 stimulates cyclic vitamin D receptor/retinoid X receptor DNA-binding, co-activator recruitment, and histone acetylation in intact osteoblasts.
    Kim S; Shevde NK; Pike JW
    J Bone Miner Res; 2005 Feb; 20(2):305-17. PubMed ID: 15647825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of the vitamin D-modulated epigenome on VDR target gene regulation.
    Nurminen V; Neme A; Seuter S; Carlberg C
    Biochim Biophys Acta Gene Regul Mech; 2018 Aug; 1861(8):697-705. PubMed ID: 30018005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1alpha,25-dihydroxyvitamin D3 inducible transcription factor and its role in the vitamin D action.
    Nezbedova P; Brtko J
    Endocr Regul; 2004 Mar; 38(1):29-38. PubMed ID: 15147236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thyroid hormone receptor does not heterodimerize with the vitamin D receptor but represses vitamin D receptor-mediated transactivation.
    Raval-Pandya M; Freedman LP; Li H; Christakos S
    Mol Endocrinol; 1998 Sep; 12(9):1367-79. PubMed ID: 9731705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current understanding of the function of the nuclear vitamin D receptor in response to its natural and synthetic ligands.
    Carlberg C
    Recent Results Cancer Res; 2003; 164():29-42. PubMed ID: 12899512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The N-terminal domain of transcription factor IIB is required for direct interaction with the vitamin D receptor and participates in vitamin D-mediated transcription.
    Masuyama H; Jefcoat SC; MacDonald PN
    Mol Endocrinol; 1997 Feb; 11(2):218-28. PubMed ID: 9013769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vitamin D receptor activation down-regulates the small heterodimer partner and increases CYP7A1 to lower cholesterol.
    Chow EC; Magomedova L; Quach HP; Patel R; Durk MR; Fan J; Maeng HJ; Irondi K; Anakk S; Moore DD; Cummins CL; Pang KS
    Gastroenterology; 2014 Apr; 146(4):1048-59. PubMed ID: 24365583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear hormone 1α,25-dihydroxyvitamin D3 elicits a genome-wide shift in the locations of VDR chromatin occupancy.
    Heikkinen S; Väisänen S; Pehkonen P; Seuter S; Benes V; Carlberg C
    Nucleic Acids Res; 2011 Nov; 39(21):9181-93. PubMed ID: 21846776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.