These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35325297)

  • 41. Epigenetic analyses and the distribution of repetitive DNA and resistance genes reveal the complexity of common bean (Phaseolus vulgaris L., Fabaceae) heterochromatin.
    Fonsêca A; Richard MM; Geffroy V; Pedrosa-Harand A
    Cytogenet Genome Res; 2014; 143(1-3):168-78. PubMed ID: 24752176
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular and cytogenetic characterization of site-specific repetitive DNA sequences in the Chinese soft-shelled turtle (Pelodiscus sinensis, Trionychidae).
    Yamada K; Nishida-Umehara C; Matsuda Y
    Chromosome Res; 2005; 13(1):33-46. PubMed ID: 15791410
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Origin and distribution of AT-rich repetitive DNA families in Triatoma infestans (Heteroptera).
    Bardella VB; da Rosa JA; Vanzela AL
    Infect Genet Evol; 2014 Apr; 23():106-14. PubMed ID: 24524986
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chromosomal structures and repetitive sequences divergence in Cucumis species revealed by comparative cytogenetic mapping.
    Zhang Y; Cheng C; Li J; Yang S; Wang Y; Li Z; Chen J; Lou Q
    BMC Genomics; 2015 Sep; 16(1):730. PubMed ID: 26407707
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Hypermethylated Regions in Avian Chromosomes.
    Schmid M; Steinlein C
    Cytogenet Genome Res; 2017; 151(4):216-227. PubMed ID: 28315870
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular cloning and characterization of the repetitive DNA sequences that comprise the constitutive heterochromatin of the A and B chromosomes of the Korean field mouse (Apodemus peninsulae, Muridae, Rodentia).
    Matsubara K; Yamada K; Umemoto S; Tsuchiya K; Ikeda N; Nishida C; Chijiwa T; Moriwaki K; Matsuda Y
    Chromosome Res; 2008; 16(7):1013-26. PubMed ID: 18949567
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Noisy silence: non-coding RNA and heterochromatin formation at repetitive elements.
    Bierhoff H; Postepska-Igielska A; Grummt I
    Epigenetics; 2014 Jan; 9(1):53-61. PubMed ID: 24121539
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evolutionary dynamics of segmental duplications from human Y-chromosomal euchromatin/heterochromatin transition regions.
    Kirsch S; Münch C; Jiang Z; Cheng Z; Chen L; Batz C; Eichler EE; Schempp W
    Genome Res; 2008 Jul; 18(7):1030-42. PubMed ID: 18445620
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phylogenetic patterns of ant-fungus associations indicate that farming strategies, not only a superior fungal cultivar, explain the ecological success of leafcutter ants.
    Mueller UG; Kardish MR; Ishak HD; Wright AM; Solomon SE; Bruschi SM; Carlson AL; Bacci M
    Mol Ecol; 2018 May; 27(10):2414-2434. PubMed ID: 29740906
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identifying the transition between single and multiple mating of queens in fungus-growing ants.
    Villesen P; Murakami T; Schultz TR; Boomsma JJ
    Proc Biol Sci; 2002 Aug; 269(1500):1541-8. PubMed ID: 12184823
    [TBL] [Abstract][Full Text] [Related]  

  • 51. How diverse is heterochromatin in the Caesalpinia group? Cytogenomic characterization of Erythrostemon hughesii Gagnon & G.P. Lewis (Leguminosae: Caesalpinioideae).
    Mata-Sucre Y; Sader M; Van-Lume B; Gagnon E; Pedrosa-Harand A; Leitch IJ; Lewis GP; Souza G
    Planta; 2020 Sep; 252(4):49. PubMed ID: 32918627
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Satellite DNA probes of Alstroemeria longistaminea (Alstroemeriaceae) paint the heterochromatin and the B chromosome, reveal a G-like banding pattern, and point to a strong structural karyotype conservation.
    Ribeiro T; Vaio M; Félix LP; Guerra M
    Protoplasma; 2022 Mar; 259(2):413-426. PubMed ID: 34148192
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The involvement of repetitive sequences in the remodelling of karyotypes: the Phodopus genomes (Rodentia, Cricetidae).
    Paço A; Chaves R; Vieira-da-Silva A; Adega F
    Micron; 2013 Mar; 46():27-34. PubMed ID: 23280178
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chromosomal organization and evolutionary history of Mariner transposable elements in Scarabaeinae coleopterans.
    Oliveira SG; Cabral-de-Mello DC; Moura RC; Martins C
    Mol Cytogenet; 2013 Nov; 6(1):54. PubMed ID: 24286129
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cytogenetic data on six leafcutter ants of the genus Acromyrmex Mayr, 1865 (Hymenoptera, Formicidae, Myrmicinae): insights into chromosome evolution and taxonomic implications.
    Barros LA; de Aguiar HJ; Mariano Cdos S; Andrade-Souza V; Costa MA; Delabie JH; Pompolo Sd
    Comp Cytogenet; 2016; 10(2):229-43. PubMed ID: 27551345
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Karyotype diversity and chromosomal organization of repetitive DNA in Tityus obscurus (Scorpiones, Buthidae).
    Almeida BRR; Milhomem-Paixão SSR; Noronha RCR; Nagamachi CY; Costa MJRD; Pardal PPO; Coelho JS; Pieczarka JC
    BMC Genet; 2017 Apr; 18(1):35. PubMed ID: 28412934
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular organization of heterochromatin in malaria mosquitoes of the Anopheles maculipennis subgroup.
    Grushko OG; Sharakhova MV; Stegnii VN; Sharakhov IV
    Gene; 2009 Dec; 448(2):192-7. PubMed ID: 19664695
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Heterochromatin and microsatellites detection in karyotypes of four sea turtle species: Interspecific chromosomal differences.
    Machado CRD; Domit C; Pucci MB; Gazolla CB; Glugoski L; Nogaroto V; Vicari MR
    Genet Mol Biol; 2020; 43(4):e20200213. PubMed ID: 33270075
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Heterochromatin characterization through differential fluorophore binding pattern in some species of Vigna Savi.
    Shamurailatpam A; Madhavan L; Yadav SR; Bhat KV; Rao SR
    Protoplasma; 2015 Mar; 252(2):629-35. PubMed ID: 25303854
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chromosomal mapping of repetitive DNAs in the beetle Dichotomius geminatus provides the first evidence for an association of 5S rRNA and histone H3 genes in insects, and repetitive DNA similarity between the B chromosome and A complement.
    Cabral-de-Mello DC; Moura RC; Martins C
    Heredity (Edinb); 2010 Apr; 104(4):393-400. PubMed ID: 19756039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.