BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35325548)

  • 1. Integrating Long-Range Regulatory Interactions to Predict Gene Expression Using Graph Convolutional Networks.
    Bigness J; Loinaz X; Patel S; Larschan E; Singh R
    J Comput Biol; 2022 May; 29(5):409-424. PubMed ID: 35325548
    [No Abstract]   [Full Text] [Related]  

  • 2. Graph convolutional networks for epigenetic state prediction using both sequence and 3D genome data.
    Lanchantin J; Qi Y
    Bioinformatics; 2020 Dec; 36(Suppl_2):i659-i667. PubMed ID: 33381816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating distal and proximal information to predict gene expression via a densely connected convolutional neural network.
    Zeng W; Wang Y; Jiang R
    Bioinformatics; 2020 Jan; 36(2):496-503. PubMed ID: 31318408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explaining decisions of graph convolutional neural networks: patient-specific molecular subnetworks responsible for metastasis prediction in breast cancer.
    Chereda H; Bleckmann A; Menck K; Perera-Bel J; Stegmaier P; Auer F; Kramer F; Leha A; Beißbarth T
    Genome Med; 2021 Mar; 13(1):42. PubMed ID: 33706810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatin interaction-aware gene regulatory modeling with graph attention networks.
    Karbalayghareh A; Sahin M; Leslie CS
    Genome Res; 2022 May; 32(5):930-944. PubMed ID: 35396274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepChrome: deep-learning for predicting gene expression from histone modifications.
    Singh R; Lanchantin J; Robins G; Qi Y
    Bioinformatics; 2016 Sep; 32(17):i639-i648. PubMed ID: 27587684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explainable Multilayer Graph Neural Network for cancer gene prediction.
    Chatzianastasis M; Vazirgiannis M; Zhang Z
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37862225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.
    Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S
    BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel candidate disease gene prioritization method using deep graph convolutional networks and semi-supervised learning.
    Azadifar S; Ahmadi A
    BMC Bioinformatics; 2022 Oct; 23(1):422. PubMed ID: 36241966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A graph convolutional neural network for gene expression data analysis with multiple gene networks.
    Yang H; Zhuang Z; Pan W
    Stat Med; 2021 Nov; 40(25):5547-5564. PubMed ID: 34258781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locality preserving dense graph convolutional networks with graph context-aware node representations.
    Liu W; Gong M; Tang Z; Qin AK; Sheng K; Xu M
    Neural Netw; 2021 Nov; 143():108-120. PubMed ID: 34116289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating Molecular Graph Data of Drugs and Multiple -Omic Data of Cell Lines for Drug Response Prediction.
    Nguyen GTT; Vu HD; Le DH
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):710-717. PubMed ID: 34260355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graph Neural Network-Based Diagnosis Prediction.
    Li Y; Qian B; Zhang X; Liu H
    Big Data; 2020 Oct; 8(5):379-390. PubMed ID: 32783631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local augmented graph neural network for multi-omics cancer prognosis prediction and analysis.
    Zhang Y; Xiong S; Wang Z; Liu Y; Luo H; Li B; Zou Q
    Methods; 2023 May; 213():1-9. PubMed ID: 36933628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying drug-target interactions based on graph convolutional network and deep neural network.
    Zhao T; Hu Y; Valsdottir LR; Zang T; Peng J
    Brief Bioinform; 2021 Mar; 22(2):2141-2150. PubMed ID: 32367110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DualGCN: a dual graph convolutional network model to predict cancer drug response.
    Ma T; Liu Q; Li H; Zhou M; Jiang R; Zhang X
    BMC Bioinformatics; 2022 Apr; 23(Suppl 4):129. PubMed ID: 35428192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reinventing gene expression connectivity through regulatory and spatial structural empowerment via principal node aggregation graph neural network.
    Yan F; Jiang L; Chen D; Ceccarelli M; Guo Y
    Nucleic Acids Res; 2024 Jun; ():. PubMed ID: 38884259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CommPOOL: An interpretable graph pooling framework for hierarchical graph representation learning.
    Tang H; Ma G; He L; Huang H; Zhan L
    Neural Netw; 2021 Nov; 143():669-677. PubMed ID: 34375808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A social theory-enhanced graph representation learning framework for multitask prediction of drug-drug interactions.
    Feng YH; Zhang SW; Feng YY; Zhang QQ; Shi MH; Shi JY
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ExplaiNN: interpretable and transparent neural networks for genomics.
    Novakovsky G; Fornes O; Saraswat M; Mostafavi S; Wasserman WW
    Genome Biol; 2023 Jun; 24(1):154. PubMed ID: 37370113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.