These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35325760)

  • 1. Transfer learning with molecular graph convolutional networks for accurate modeling and representation of bioactivities of ligands targeting GPCRs without sufficient data.
    Wu J; Lan C; Mei Z; Chen X; Zhu Y; Hu H; Diao Y
    Comput Biol Chem; 2022 Jun; 98():107664. PubMed ID: 35325760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. WDL-RF: predicting bioactivities of ligand molecules acting with G protein-coupled receptors by combining weighted deep learning and random forest.
    Wu J; Zhang Q; Wu W; Pang T; Hu H; Chan WKB; Ke X; Zhang Y
    Bioinformatics; 2018 Jul; 34(13):2271-2282. PubMed ID: 29432522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homologous G Protein-Coupled Receptors Boost the Modeling and Interpretation of Bioactivities of Ligand Molecules.
    Wu J; Sun Y; Chan WKB; Zhu Y; Zhu W; Huang W; Hu H; Yan S; Pang T; Ke X; Li F
    J Chem Inf Model; 2020 Mar; 60(3):1865-1875. PubMed ID: 32040913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-source transfer learning with Graph Neural Network for excellent modelling the bioactivities of ligands targeting orphan G protein-coupled receptors.
    Huang S; Zheng S; Chen R
    Math Biosci Eng; 2023 Jan; 20(2):2588-2608. PubMed ID: 36899548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precise modelling and interpretation of bioactivities of ligands targeting G protein-coupled receptors.
    Wu J; Liu B; Chan WKB; Wu W; Pang T; Hu H; Yan S; Ke X; Zhang Y
    Bioinformatics; 2019 Jul; 35(14):i324-i332. PubMed ID: 31510691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AFSE: towards improving model generalization of deep graph learning of ligand bioactivities targeting GPCR proteins.
    Yin Y; Hu H; Yang Z; Jiang F; Huang Y; Wu J
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35348582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. OLB-AC: toward optimizing ligand bioactivities through deep graph learning and activity cliffs.
    Yin Y; Hu H; Yang J; Ye C; Goh WWB; Kong AW; Wu J
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38889277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RealVS: Toward Enhancing the Precision of Top Hits in Ligand-Based Virtual Screening of Drug Leads from Large Compound Databases.
    Yin Y; Hu H; Yang Z; Xu H; Wu J
    J Chem Inf Model; 2021 Oct; 61(10):4924-4939. PubMed ID: 34619030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Node-personalized multi-graph convolutional networks for recommendation.
    Zhou T; Ye H; Cao F
    Neural Netw; 2024 May; 173():106169. PubMed ID: 38359642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of GPCR activity using machine learning.
    Yadav P; Mollaei P; Cao Z; Wang Y; Barati Farimani A
    Comput Struct Biotechnol J; 2022; 20():2564-2573. PubMed ID: 35685352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning and AI-based approaches for bioactive ligand discovery and GPCR-ligand recognition.
    Raschka S; Kaufman B
    Methods; 2020 Aug; 180():89-110. PubMed ID: 32645448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial-MGCN: a novel multi-view graph convolutional network for identifying spatial domains with attention mechanism.
    Wang B; Luo J; Liu Y; Shi W; Xiong Z; Shen C; Long Y
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37466210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Machine Learning Approach for the Discovery of Ligand-Specific Functional Mechanisms of GPCRs.
    Plante A; Shore DM; Morra G; Khelashvili G; Weinstein H
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31159491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of machine learning in GPCR bioactive ligand discovery.
    Jabeen A; Ranganathan S
    Curr Opin Struct Biol; 2019 Apr; 55():66-76. PubMed ID: 31005679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revolutionizing GPCR-ligand predictions: DeepGPCR with experimental validation for high-precision drug discovery.
    Zhang H; Fan H; Wang J; Hou T; Saravanan KM; Xia W; Kan HW; Li J; Zhang JZH; Liang X; Chen Y
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38864340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LigBind: Identifying Binding Residues for Over 1000 Ligands with Relation-Aware Graph Neural Networks.
    Xia Y; Pan X; Shen HB
    J Mol Biol; 2023 Jul; 435(13):168091. PubMed ID: 37054909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decrypting orphan GPCR drug discovery via multitask learning.
    Huang WC; Lin WT; Hung MS; Lee JC; Tung CW
    J Cheminform; 2024 Jan; 16(1):10. PubMed ID: 38263092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated discovery of GPCR bioactive ligands.
    Raschka S
    Curr Opin Struct Biol; 2019 Apr; 55():17-24. PubMed ID: 30909105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coronary heart disease prediction method fusing domain-adaptive transfer learning with graph convolutional networks (GCN).
    Lin H; Chen K; Xue Y; Zhong S; Chen L; Ye M
    Sci Rep; 2023 Aug; 13(1):14276. PubMed ID: 37652917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A machine learning model for classifying G-protein-coupled receptors as agonists or antagonists.
    Oh J; Ceong HT; Na D; Park C
    BMC Bioinformatics; 2022 Aug; 23(Suppl 9):346. PubMed ID: 35982407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.