BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 35325786)

  • 1. Towards the development of reagent-free and reusable electrochemical aptamer-based cortisol sensor.
    Karuppaiah G; Velayutham J; Hansda S; Narayana N; Bhansali S; Manickam P
    Bioelectrochemistry; 2022 Jun; 145():108098. PubMed ID: 35325786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitive Identification of Microcystin-LR via a Reagent-Free and Reusable Electrochemical Biosensor Using a Methylene Blue-Labeled Aptamer.
    Wei X; Wang S; Zhan Y; Kai T; Ding P
    Biosensors (Basel); 2022 Jul; 12(8):. PubMed ID: 35892453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox Reporter - Ligand Competition to Support Signaling in the Cocaine-Binding Electrochemical Aptamer-Based Biosensor.
    Dauphin-Ducharme P; Churcher ZR; Shoara AA; Rahbarimehr E; Slavkovic S; Fontaine N; Boisvert O; Johnson PE
    Chemistry; 2023 Jun; 29(35):e202300618. PubMed ID: 36988081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impedimetric determination of cortisol using screen-printed electrode with aptamer-modified magnetic beads.
    Pusomjit P; Teengam P; Thepsuparungsikul N; Sanongkiet S; Chailapakul O
    Mikrochim Acta; 2021 Jan; 188(2):41. PubMed ID: 33452651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ultrasensitive aptamer-antibody sandwich cortisol sensor for the noninvasive monitoring of stress state.
    Huang Z; Chen H; Ye H; Chen Z; Jaffrezic-Renault N; Guo Z
    Biosens Bioelectron; 2021 Oct; 190():113451. PubMed ID: 34171819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of Spontaneous Alkyne-Gold Self-Assembly Chemistry as an Alternative Method for Fabricating Electrochemical Aptamer-Based Sensors.
    Olivan LA; Hand K; White RJ
    Langmuir; 2024 Jun; 40(23):12117-12123. PubMed ID: 38826127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An electrochemical aptamer-based sensor prepared by utilizing the strong interaction between a DNA aptamer and diamond.
    Asai K; Yamamoto T; Nagashima S; Ogata G; Hibino H; Einaga Y
    Analyst; 2020 Jan; 145(2):544-549. PubMed ID: 31764923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Aptamer Modification of Au Surfaces in a Microelectrode Sensor Array for Simultaneous Detection of Multiple Analytes.
    Sen D; Lazenby RA
    Anal Chem; 2023 May; 95(17):6828-6835. PubMed ID: 37071798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution-Phase Electrochemical Aptamer-Based Sensors.
    Yuan Y; Bali A; White RJ; Heikenfeld J
    IEEE Trans Biomed Eng; 2023 Mar; 70(3):824-830. PubMed ID: 36063526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the sensitivity and stability of electrochemical aptamer-based sensors by AuNPs@MXene nanocomposite for continuous monitoring of biomarkers.
    Duan H; Tang SY; Goda K; Li M
    Biosens Bioelectron; 2024 Feb; 246():115918. PubMed ID: 38086309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Characterization of Binding between Aptamer and Bisphenol A and Developing Electrochemical Aptasensors for Bisphenol A with Rationally Engineered Aptamers.
    Liu L; Yu H; Zhao Q
    Biosensors (Basel); 2022 Oct; 12(11):. PubMed ID: 36354422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pendulum-type electrochemical aptamer-based sensor for continuous, real-time and stable detection of proteins.
    Wang Y; Duan H; Yalikun Y; Cheng S; Li M
    Talanta; 2024 Jan; 266(Pt 1):125026. PubMed ID: 37544252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An electrochemical aptamer-based sensor for the rapid and convenient measurement of L-tryptophan.
    Idili A; Gerson J; Parolo C; Kippin T; Plaxco KW
    Anal Bioanal Chem; 2019 Jul; 411(19):4629-4635. PubMed ID: 30796485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calibration-Free Measurement of Phenylalanine Levels in the Blood Using an Electrochemical Aptamer-Based Sensor Suitable for Point-of-Care Applications.
    Idili A; Parolo C; Ortega G; Plaxco KW
    ACS Sens; 2019 Dec; 4(12):3227-3233. PubMed ID: 31789505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical aptamer-based microsensor for real-time monitoring of adenosine in vivo.
    Zhang D; Ma J; Meng X; Xu Z; Zhang J; Fang Y; Guo Y
    Anal Chim Acta; 2019 Oct; 1076():55-63. PubMed ID: 31203964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-Reporter Drift Correction To Enhance the Performance of Electrochemical Aptamer-Based Sensors in Whole Blood.
    Li H; Arroyo-Currás N; Kang D; Ricci F; Plaxco KW
    J Am Chem Soc; 2016 Dec; 138(49):15809-15812. PubMed ID: 27960346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wearable Sensing Device Integrated with Prestored Reagents for Cortisol Detection in Sweat.
    Luan Y; Zhou Y; Li C; Wang H; Zhou Y; Wang Q; He X; Huang J; Liu J; Yang X; Wang K
    ACS Sens; 2024 Apr; 9(4):2075-2082. PubMed ID: 38557006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aptamer-functionalized nanoparticles for surface immobilization-free electrochemical detection of cortisol in a microfluidic device.
    Sanghavi BJ; Moore JA; Chávez JL; Hagen JA; Kelley-Loughnane N; Chou CF; Swami NS
    Biosens Bioelectron; 2016 Apr; 78():244-252. PubMed ID: 26618642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A reagentless electrochemical sensor for aflatoxin B1 with sensitive signal-on responses using aptamer with methylene blue label at specific internal thymine.
    Wang C; Zhao Q
    Biosens Bioelectron; 2020 Nov; 167():112478. PubMed ID: 32810704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aptamer pseudoknot-functionalized electronic sensor for reagentless and single-step detection of immunoglobulin E in human serum.
    Jiang B; Li F; Yang C; Xie J; Xiang Y; Yuan R
    Anal Chem; 2015 Mar; 87(5):3094-8. PubMed ID: 25666563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.