These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 35326155)

  • 1. Nanotechnology as a Tool to Mitigate the Effects of Intestinal Microbiota on Metabolization of Anthocyanins.
    Rosales TKO; Hassimotto NMA; Lajolo FM; Fabi JP
    Antioxidants (Basel); 2022 Mar; 11(3):. PubMed ID: 35326155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoencapsulated anthocyanin as a functional ingredient: Technological application and future perspectives.
    Rosales TKO; Fabi JP
    Colloids Surf B Biointerfaces; 2022 Oct; 218():112707. PubMed ID: 35907354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotransformation of anthocyanins from
    Zheng F; Han M; He Y; Zhang Y; Liu S; Yue H; Wen L
    Xenobiotica; 2019 Sep; 49(9):1025-1032. PubMed ID: 30351210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous and Microbiota-Driven Degradation of Anthocyanins in an In Vitro Human Colon Model.
    Shehata E; Day-Walsh P; Kellingray L; Narbad A; Kroon PA
    Mol Nutr Food Res; 2023 Oct; 67(19):e2300036. PubMed ID: 37525336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anthocyanin Absorption and Metabolism by Human Intestinal Caco-2 Cells--A Review.
    Kamiloglu S; Capanoglu E; Grootaert C; Van Camp J
    Int J Mol Sci; 2015 Sep; 16(9):21555-74. PubMed ID: 26370977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced approaches for improving bioavailability and controlled release of anthocyanins.
    Shen Y; Zhang N; Tian J; Xin G; Liu L; Sun X; Li B
    J Control Release; 2022 Jan; 341():285-299. PubMed ID: 34822910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability and biotransformation of various dietary anthocyanins in vitro.
    Fleschhut J; Kratzer F; Rechkemmer G; Kulling SE
    Eur J Nutr; 2006 Feb; 45(1):7-18. PubMed ID: 15834757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay between anthocyanins and gut microbiota.
    Faria A; Fernandes I; Norberto S; Mateus N; Calhau C
    J Agric Food Chem; 2014 Jul; 62(29):6898-902. PubMed ID: 24915058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of anthocyanins and consequent effects on the gut microbiota.
    Tian L; Tan Y; Chen G; Wang G; Sun J; Ou S; Chen W; Bai W
    Crit Rev Food Sci Nutr; 2019; 59(6):982-991. PubMed ID: 30595029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current knowledge of anthocyanin metabolism in the digestive tract: absorption, distribution, degradation, and interconversion.
    Gui H; Sun L; Liu R; Si X; Li D; Wang Y; Shu C; Sun X; Jiang Q; Qiao Y; Li B; Tian J
    Crit Rev Food Sci Nutr; 2023; 63(22):5953-5966. PubMed ID: 35057688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioavailability of anthocyanins.
    Fang J
    Drug Metab Rev; 2014 Nov; 46(4):508-20. PubMed ID: 25347327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability and absorption of anthocyanins from blueberries subjected to a simulated digestion process.
    Liu Y; Zhang D; Wu Y; Wang D; Wei Y; Wu J; Ji B
    Int J Food Sci Nutr; 2014 Jun; 65(4):440-8. PubMed ID: 24393027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. State of the Art of Anthocyanins: Antioxidant Activity, Sources, Bioavailability, and Therapeutic Effect in Human Health.
    Tena N; Martín J; Asuero AG
    Antioxidants (Basel); 2020 May; 9(5):. PubMed ID: 32456252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of recent advances on cyanidin-3-glucoside: the biotransformation, absorption, bioactivity and applications of nano-encapsulation.
    Yang M; Abdullah ; Ahmad N; Hussain M; Lu X; Xu J; Zhong H; Guan R
    Food Funct; 2023 Jul; 14(14):6320-6345. PubMed ID: 37403833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidant potential and phenolic profile of blackberry anthocyanin extract followed by human gut microbiota fermentation.
    Gowd V; Bao T; Chen W
    Food Res Int; 2019 Jun; 120():523-533. PubMed ID: 31000268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of stabilization malvids anthocyanins on the gut microbiota in mice with oxidative stress.
    Zheng F; Wang YZ; Wu YX; Zhang MY; Li FT; He Y; Wen LK; Yue H
    J Food Biochem; 2021 Dec; 45(12):4892-4902. PubMed ID: 34755355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoencapsulation in low-molecular-weight chitosan improves in vivo antioxidant potential of black carrot anthocyanin.
    Chatterjee NS; Dara PK; Perumcherry Raman S; Vijayan DK; Sadasivam J; Mathew S; Ravishankar CN; Anandan R
    J Sci Food Agric; 2021 Sep; 101(12):5264-5271. PubMed ID: 33646598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora.
    Keppler K; Humpf HU
    Bioorg Med Chem; 2005 Sep; 13(17):5195-205. PubMed ID: 15963727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary Phenolic Compounds: Their Health Benefits and Association with the Gut Microbiota.
    Matsumura Y; Kitabatake M; Kayano SI; Ito T
    Antioxidants (Basel); 2023 Apr; 12(4):. PubMed ID: 37107256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutual Effects of Free and Nanoencapsulated Phenolic Compounds on Human Microbiota.
    Cassini C; Zatti PH; Angeli VW; Branco CS; Salvador M
    Curr Med Chem; 2022; 29(18):3160-3178. PubMed ID: 34720074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.