BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 35326387)

  • 1. Analyzing the Androgen Receptor Interactome in Prostate Cancer: Implications for Therapeutic Intervention.
    Dahiya UR; Heemers HV
    Cells; 2022 Mar; 11(6):. PubMed ID: 35326387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Androgen action in the prostate gland.
    Yadav N; Heemers HV
    Minerva Urol Nefrol; 2012 Mar; 64(1):35-49. PubMed ID: 22402316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional implications and therapeutic targeting of androgen response elements in prostate cancer.
    Senapati D; Sharma V; Rath SK; Rai U; Panigrahi N
    Biochimie; 2023 Nov; 214(Pt B):188-198. PubMed ID: 37460038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting the androgen receptor signaling pathway in advanced prostate cancer.
    Chung C; Abboud K
    Am J Health Syst Pharm; 2022 Jul; 79(15):1224-1235. PubMed ID: 35390118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AR-dependent phosphorylation and phospho-proteome targets in prostate cancer.
    Venkadakrishnan VB; Ben-Salem S; Heemers HV
    Endocr Relat Cancer; 2020 Jun; 27(6):R193-R210. PubMed ID: 32276264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternative approaches to prevent androgen action in prostate cancer: are we there yet?
    Elbanna M; Heemers HV
    Discov Med; 2014 May; 17(95):267-74. PubMed ID: 24882718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of non-nuclear AR signaling in prostate cancer progression and therapeutic resistance.
    Zarif JC; Miranti CK
    Cell Signal; 2016 May; 28(5):348-356. PubMed ID: 26829214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Androgen receptor co-regulation in prostate cancer.
    Senapati D; Kumari S; Heemers HV
    Asian J Urol; 2020 Jul; 7(3):219-232. PubMed ID: 32742924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Androgen receptors in hormone-dependent and castration-resistant prostate cancer.
    Shafi AA; Yen AE; Weigel NL
    Pharmacol Ther; 2013 Dec; 140(3):223-38. PubMed ID: 23859952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Androgen receptor-dependent and -independent mechanisms driving prostate cancer progression: Opportunities for therapeutic targeting from multiple angles.
    Hoang DT; Iczkowski KA; Kilari D; See W; Nevalainen MT
    Oncotarget; 2017 Jan; 8(2):3724-3745. PubMed ID: 27741508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interplay between orphan nuclear receptors and androgen receptor-dependent or-independent growth signalings in prostate cancer.
    Wang Y; Gao W; Li Y; Chow ST; Xie W; Zhang X; Zhou J; Chan FL
    Mol Aspects Med; 2021 Apr; 78():100921. PubMed ID: 33121737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting androgen receptor action for prostate cancer treatment: does the post-receptor level provide novel opportunities?
    Heemers HV
    Int J Biol Sci; 2014; 10(6):576-87. PubMed ID: 24948870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Insights into Molecular Indicators of Response and Resistance to Modern Androgen-Axis Therapies in Prostate Cancer.
    Silberstein JL; Taylor MN; Antonarakis ES
    Curr Urol Rep; 2016 Apr; 17(4):29. PubMed ID: 26902623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular modelling of the androgen receptor axis: rational basis for androgen receptor intervention in androgen-independent prostate cancer.
    Fletterick RJ
    BJU Int; 2005 Dec; 96 Suppl 2():2-9. PubMed ID: 16359432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered corepressor SMRT expression and recruitment to target genes as a mechanism that change the response to androgens in prostate cancer progression.
    Godoy AS; Sotomayor PC; Villagran M; Yacoub R; Montecinos VP; McNerney EM; Moser M; Foster BA; Onate SA
    Biochem Biophys Res Commun; 2012 Jul; 423(3):564-70. PubMed ID: 22695118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential androgen receptor signals in different cells explain why androgen-deprivation therapy of prostate cancer fails.
    Niu Y; Chang TM; Yeh S; Ma WL; Wang YZ; Chang C
    Oncogene; 2010 Jun; 29(25):3593-604. PubMed ID: 20440270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TCF7 is suppressed by the androgen receptor via microRNA-1-mediated downregulation and is involved in the development of resistance to androgen deprivation in prostate cancer.
    Siu MK; Chen WY; Tsai HY; Chen HY; Yin JJ; Chen CL; Tsai YC; Liu YN
    Prostate Cancer Prostatic Dis; 2017 Jun; 20(2):172-178. PubMed ID: 28220803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prolonged androgen receptor loading onto chromatin and the efficient recruitment of p160 coactivators contribute to androgen-independent growth of prostate cancer cells.
    Shi XB; Xue L; Zou JX; Gandour-Edwards R; Chen H; deVere White RW
    Prostate; 2008 Dec; 68(16):1816-26. PubMed ID: 18780293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beyond androgen deprivation: ancillary integrative strategies for targeting the androgen receptor addiction of prostate cancer.
    McCarty MF; Hejazi J; Rastmanesh R
    Integr Cancer Ther; 2014 Sep; 13(5):386-95. PubMed ID: 24867960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Androgen deprivation therapy for advanced prostate cancer: why does it fail and can its effects be prolonged?
    Singer EA; Golijanin DJ; Messing EM
    Can J Urol; 2008 Dec; 15(6):4381-7. PubMed ID: 19046491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.