BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35326409)

  • 1. (±)-Catechin-A Mass-Spectrometry-Based Exploration Coordination Complex Formation with Fe
    Kubicova L; Bachmann G; Weckwerth W; Chobot V
    Cells; 2022 Mar; 11(6):. PubMed ID: 35326409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antioxidant Properties and the Formation of Iron Coordination Complexes of 8-Hydroxyquinoline.
    Chobot V; Hadacek F; Bachmann G; Weckwerth W; Kubicova L
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30544490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordination Complex Formation and Redox Properties of Kynurenic and Xanthurenic Acid Can Affect Brain Tissue Homeodynamics.
    Kubicova L; Hadacek F; Bachmann G; Weckwerth W; Chobot V
    Antioxidants (Basel); 2019 Oct; 8(10):. PubMed ID: 31614581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. (+/-)-catechin: chemical weapon, antioxidant, or stress regulator?
    Chobot V; Huber C; Trettenhahn G; Hadacek F
    J Chem Ecol; 2009 Aug; 35(8):980-96. PubMed ID: 19701725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions.
    Lopes GK; Schulman HM; Hermes-Lima M
    Biochim Biophys Acta; 1999 Oct; 1472(1-2):142-52. PubMed ID: 10572935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploration of pro-oxidant and antioxidant activities of the flavonoid myricetin.
    Chobot V; Hadacek F
    Redox Rep; 2011; 16(6):242-7. PubMed ID: 22195992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pro- and Antioxidant Activity of Three Selected Flavan Type Flavonoids: Catechin, Eriodictyol and Taxifolin.
    Chobot V; Hadacek F; Bachmann G; Weckwerth W; Kubicova L
    Int J Mol Sci; 2016 Nov; 17(12):. PubMed ID: 27898046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reevaluating the role of 1,10-phenanthroline in oxidative reactions involving ferrous ions and DNA damage.
    de Avellar IG; Magalhães MM; Silva AB; Souza LL; Leitão AC; Hermes-Lima M
    Biochim Biophys Acta; 2004 Nov; 1675(1-3):46-53. PubMed ID: 15535966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual mechanism of mangiferin protection against iron-induced damage to 2-deoxyribose and ascorbate oxidation.
    Pardo-Andreu GL; Delgado R; Núñez-Sellés AJ; Vercesi AE
    Pharmacol Res; 2006 Mar; 53(3):253-60. PubMed ID: 16412661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tannic acid inhibits in vitro iron-dependent free radical formation.
    Andrade RG; Ginani JS; Lopes GK; Dutra F; Alonso A; Hermes-Lima M
    Biochimie; 2006 Sep; 88(9):1287-96. PubMed ID: 16600466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The iron chelator pyridoxal isonicotinoyl hydrazone (PIH) and its analogues prevent damage to 2-deoxyribose mediated by ferric iron plus ascorbate.
    Hermes-Lima M; Ponka P; Schulman HM
    Biochim Biophys Acta; 2000 Oct; 1523(2-3):154-60. PubMed ID: 11042379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ternary complexes of iron, amyloid-beta, and nitrilotriacetic acid: binding affinities, redox properties, and relevance to iron-induced oxidative stress in Alzheimer's disease.
    Jiang D; Li X; Williams R; Patel S; Men L; Wang Y; Zhou F
    Biochemistry; 2009 Aug; 48(33):7939-47. PubMed ID: 19601593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron autoxidation and free radical generation: effects of buffers, ligands, and chelators.
    Welch KD; Davis TZ; Aust SD
    Arch Biochem Biophys; 2002 Jan; 397(2):360-9. PubMed ID: 11795895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deoxyribose degradation catalyzed by Fe(III)-EDTA: kinetic aspects and potential usefulness for submicromolar iron measurements.
    Hermes-Lima M; Wang EM; Schulman HM; Storey KB; Ponka P
    Mol Cell Biochem; 1994 Aug; 137(1):65-73. PubMed ID: 7845380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyridoxal isonicotinoyl hydrazone inhibits iron-induced ascorbate oxidation and ascorbyl radical formation.
    Maurício AQ; Lopes GK; Gomes CS; Oliveira RG; Alonso A; Hermes-Lima M
    Biochim Biophys Acta; 2003 Mar; 1620(1-3):15-24. PubMed ID: 12595068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. beta-Citryl-L-glutamate is an endogenous iron chelator that occurs naturally in the developing brain.
    Hamada-Kanazawa M; Kouda M; Odani A; Matsuyama K; Kanazawa K; Hasegawa T; Narahara M; Miyake M
    Biol Pharm Bull; 2010; 33(5):729-37. PubMed ID: 20460747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EPR spin trapping and 2-deoxyribose degradation studies of the effect of pyridoxal isonicotinoyl hydrazone (PIH) on *OH formation by the Fenton reaction.
    Hermes-Lima M; Santos NC; Yan J; Andrews M; Schulman HM; Ponka P
    Biochim Biophys Acta; 1999 Feb; 1426(3):475-82. PubMed ID: 10076064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reevaluation of the 2-deoxyribose assay for determination of free radical formation.
    Genaro-Mattos TC; Dalvi LT; Oliveira RG; Ginani JS; Hermes-Lima M
    Biochim Biophys Acta; 2009 Dec; 1790(12):1636-42. PubMed ID: 19747523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron chelation and redox chemistry of anthranilic acid and 3-hydroxyanthranilic acid: A comparison of two structurally related kynurenine pathway metabolites to obtain improved insights into their potential role in neurological disease development.
    Chobot V; Hadacek F; Weckwerth W; Kubicova L
    J Organomet Chem; 2015 Apr; 782():103-110. PubMed ID: 25892823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quinolinic acid: neurotoxin or oxidative stress modulator?
    Kubicova L; Hadacek F; Chobot V
    Int J Mol Sci; 2013 Oct; 14(11):21328-38. PubMed ID: 24232578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.