These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35326960)

  • 1. Age Dependent Epidemic Modeling of COVID-19 Outbreak in Kuwait, France, and Cameroon.
    Oshinubi K; Buhamra SS; Al-Kandari NM; Waku J; Rachdi M; Demongeot J
    Healthcare (Basel); 2022 Mar; 10(3):. PubMed ID: 35326960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forecasting the Long-Term Trends of Coronavirus Disease 2019 (COVID-19) Epidemic Using the Susceptible-Infectious-Recovered (SIR) Model.
    Kartono A; Karimah SV; Wahyudi ST; Setiawan AA; Sofian I
    Infect Dis Rep; 2021 Jul; 13(3):668-684. PubMed ID: 34449629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Susceptible-infectious-recovered models revisited: from the individual level to the population level.
    Magal P; Ruan S
    Math Biosci; 2014 Apr; 250():26-40. PubMed ID: 24530806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical model of SIR epidemic system (COVID-19) with fractional derivative: stability and numerical analysis.
    Alqahtani RT
    Adv Differ Equ; 2021; 2021(1):2. PubMed ID: 33424955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Model for the Lifespan Loss Due to a Viral Disease: Example of the COVID-19 Outbreak.
    Oshinubi K; Fougère C; Demongeot J
    Infect Dis Rep; 2022 Apr; 14(3):321-340. PubMed ID: 35645217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting classical SIR modelling in light of the COVID-19 pandemic.
    Kalachev L; Landguth EL; Graham J
    Infect Dis Model; 2023 Mar; 8(1):72-83. PubMed ID: 36540893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study on the efficiency of the estimation models of COVID-19.
    Alenezi MN; Al-Anzi FS; Alabdulrazzaq H; Alhusaini A; Al-Anzi AF
    Results Phys; 2021 Jul; 26():104370. PubMed ID: 34131557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relationships between message passing, pairwise, Kermack-McKendrick and stochastic SIR epidemic models.
    Wilkinson RR; Ball FG; Sharkey KJ
    J Math Biol; 2017 Dec; 75(6-7):1563-1590. PubMed ID: 28409223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical Modelling of the Spatial Distribution of a COVID-19 Outbreak with Vaccination Using Diffusion Equation.
    Kammegne B; Oshinubi K; Babasola O; Peter OJ; Longe OB; Ogunrinde RB; Titiloye EO; Abah RT; Demongeot J
    Pathogens; 2023 Jan; 12(1):. PubMed ID: 36678436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The first 100 days: Modeling the evolution of the COVID-19 pandemic.
    Kaxiras E; Neofotistos G; Angelaki E
    Chaos Solitons Fractals; 2020 Sep; 138():110114. PubMed ID: 32834582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Public healthcare system capacity during COVID-19: A computational case study of SARS-CoV-2.
    Batabyal S; Batabyal A
    Health Sci Rep; 2021 Jun; 4(2):e305. PubMed ID: 34136660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ziegler and Nichols meet Kermack and McKendrick: Parsimony in dynamic models for epidemiology.
    Nikolaou M
    Comput Chem Eng; 2022 Jan; 157():107615. PubMed ID: 34961800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epidemic trend analysis of SARS-CoV-2 in South Asian Association for Regional Cooperation countries using modified susceptible-infected-recovered predictive model.
    Dey SK; Rahman MM; Shibly KH; Siddiqi UR; Howlader A
    Eng Rep; 2022 Jul; ():e12550. PubMed ID: 35941912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The discrete-time Kermack-McKendrick model: A versatile and computationally attractive framework for modeling epidemics.
    Diekmann O; Othmer HG; Planqué R; Bootsma MCJ
    Proc Natl Acad Sci U S A; 2021 Sep; 118(39):. PubMed ID: 34561307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A nonstandard finite difference scheme for the SVICDR model to predict COVID-19 dynamics.
    Treibert S; Brunner H; Ehrhardt M
    Math Biosci Eng; 2022 Jan; 19(2):1213-1238. PubMed ID: 35135201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Epidemiological Model Considering Isolation to Predict COVID-19 Trends in Tokyo, Japan: Numerical Analysis.
    Utamura M; Koizumi M; Kirikami S
    JMIR Public Health Surveill; 2020 Dec; 6(4):e23624. PubMed ID: 33259325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-continuous and time-discrete SIR models revisited: theory and applications.
    Wacker B; Schlüter J
    Adv Differ Equ; 2020; 2020(1):556. PubMed ID: 33042201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel grey model based on Susceptible Infected Recovered Model: A case study of COVD-19.
    Duan H; Nie W
    Physica A; 2022 Sep; 602():127622. PubMed ID: 35692385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maximal reproduction number estimation and identification of transmission rate from the first inflection point of new infectious cases waves: COVID-19 outbreak example.
    Waku J; Oshinubi K; Demongeot J
    Math Comput Simul; 2022 Aug; 198():47-64. PubMed ID: 35233146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-World Implications of a Rapidly Responsive COVID-19 Spread Model with Time-Dependent Parameters via Deep Learning: Model Development and Validation.
    Jung SY; Jo H; Son H; Hwang HJ
    J Med Internet Res; 2020 Sep; 22(9):e19907. PubMed ID: 32877350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.