These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 35327873)
1. Power-Optimal Control of a Stirling Engine's Frictional Piston Motion. Paul R; Khodja A; Fischer A; Masser R; Hoffmann KH Entropy (Basel); 2022 Mar; 24(3):. PubMed ID: 35327873 [TBL] [Abstract][Full Text] [Related]
2. Optimized Piston Motion for an Alpha-Type Stirling Engine. Masser R; Khodja A; Scheunert M; Schwalbe K; Fischer A; Paul R; Hoffmann KH Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286472 [TBL] [Abstract][Full Text] [Related]
3. Cooling Cycle Optimization for a Vuilleumier Refrigerator. Paul R; Khodja A; Fischer A; Hoffmann KH Entropy (Basel); 2021 Nov; 23(12):. PubMed ID: 34945868 [TBL] [Abstract][Full Text] [Related]
4. Thermodynamic Optimization for an Endoreversible Dual-Miller Cycle (DMC) with Finite Speed of Piston. Wu Z; Chen L; Feng H Entropy (Basel); 2018 Mar; 20(3):. PubMed ID: 33265256 [TBL] [Abstract][Full Text] [Related]
5. Optimization Modeling of Irreversible Carnot Engine from the Perspective of Combining Finite Speed and Finite Time Analysis. Costea M; Petrescu S; Feidt M; Dobre C; Borcila B Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33922290 [TBL] [Abstract][Full Text] [Related]
6. Performance investigation of an active free-piston Stirling engine using artificial neural network and firefly optimization algorithm. Masoumi AP; Tavakolpour-Saleh AR; Bagherian V Heliyon; 2024 Apr; 10(7):e28387. PubMed ID: 38586371 [TBL] [Abstract][Full Text] [Related]
7. Quasilinear irreversible thermodynamics of a low-temperature-differential kinematic Stirling heat engine. Izumida Y Phys Rev E; 2020 Jul; 102(1-1):012142. PubMed ID: 32795077 [TBL] [Abstract][Full Text] [Related]
9. Finite-time thermodynamics: Engine performance improved by optimized piston motion. Mozurkewich M; Berry RS Proc Natl Acad Sci U S A; 1981 Apr; 78(4):1986-8. PubMed ID: 16592997 [TBL] [Abstract][Full Text] [Related]
10. Ecological efficiency of finite-time thermodynamics: A molecular dynamics study. Rojas-Gamboa DA; Rodríguez JI; Gonzalez-Ayala J; Angulo-Brown F Phys Rev E; 2018 Aug; 98(2-1):022130. PubMed ID: 30253568 [TBL] [Abstract][Full Text] [Related]
11. Transient performance prediction of solar dish concentrator integrated with stirling and TEG for small scale irrigation system: A case of Ethiopia. Bekele EA; Ancha VR Heliyon; 2022 Sep; 8(9):e10629. PubMed ID: 36158084 [TBL] [Abstract][Full Text] [Related]
12. Performance of discrete heat engines and heat pumps in finite time. Feldmann T; Kosloff R Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5A):4774-90. PubMed ID: 11031518 [TBL] [Abstract][Full Text] [Related]
13. Development and validation of a software application to analyze thermal and kinematic multimodels of Stirling engines. Auñón JA; Pérez JM; Martín MJ; Auñón F; Nuñez D Heliyon; 2023 Sep; 9(9):e18487. PubMed ID: 37662715 [TBL] [Abstract][Full Text] [Related]
14. Efficiencies and coefficients of performance of heat engines, refrigerators, and heat pumps with friction: a universal limiting behavior. Bizarro JP; Rodrigues P Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051109. PubMed ID: 23214740 [TBL] [Abstract][Full Text] [Related]
15. Beta Type Stirling Engine. Schmidt and Finite Physical Dimensions Thermodynamics Methods Faced to Experiments. Dobre C; Grosu L; Costea M; Constantin M Entropy (Basel); 2020 Nov; 22(11):. PubMed ID: 33287045 [TBL] [Abstract][Full Text] [Related]
16. Optimal Heat Exchanger Area Distribution and Low-Temperature Heat Sink Temperature for Power Optimization of an Endoreversible Space Carnot Cycle. Wang T; Ge Y; Chen L; Feng H; Yu J Entropy (Basel); 2021 Sep; 23(10):. PubMed ID: 34682008 [TBL] [Abstract][Full Text] [Related]
17. Research on the influence of key structural parameters on piston secondary motion. Yang H; Lei J; Deng X; Wen J; Wen Z; Song G; Mo R Sci Rep; 2021 Sep; 11(1):19080. PubMed ID: 34580397 [TBL] [Abstract][Full Text] [Related]
18. Harnessing Viscoelasticity to Suppress Irreversibility Buildup in a Colloidal Stirling Engine. Roy N; Sood AK; Ganapathy R Phys Rev Lett; 2023 Dec; 131(23):238201. PubMed ID: 38134791 [TBL] [Abstract][Full Text] [Related]
19. Four-Objective Optimization of an Irreversible Stirling Heat Engine with Linear Phenomenological Heat-Transfer Law. Xu H; Chen L; Ge Y; Feng H Entropy (Basel); 2022 Oct; 24(10):. PubMed ID: 37420511 [TBL] [Abstract][Full Text] [Related]
20. Experimental Analysis of the Influence of the Application of TiN, TiAlN, CrN and DLC1 Coatings on the Friction Losses in an Aviation Internal Combustion Engine Intended for the Propulsion of Ultralight Aircraft. Wróblewski P; Rogólski R Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832241 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]