These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35327873)

  • 21. Finite-power performance of quantum heat engines in linear response.
    Liu Q; He J; Ma Y; Wang J
    Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling and Performance Optimization of an Irreversible Two-Stage Combined Thermal Brownian Heat Engine.
    Qi C; Ding Z; Chen L; Ge Y; Feng H
    Entropy (Basel); 2021 Mar; 23(4):. PubMed ID: 33807398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temperature-dependent maximization of work and efficiency in a degeneracy-assisted quantum Stirling heat engine.
    Chatterjee S; Koner A; Chatterjee S; Kumar C
    Phys Rev E; 2021 Jun; 103(6-1):062109. PubMed ID: 34271723
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental study on liquid piston Stirling engine combined with self-rectifying turbine.
    Tomihira J; Shoji E; Biwa T; Murti P; Okuhara S; Takao M
    J Acoust Soc Am; 2024 Aug; 156(2):792-799. PubMed ID: 39109832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solar driven Stirling engine - chemical heat pump - absorption refrigerator hybrid system as environmental friendly energy system.
    Açıkkalp E; Kandemir SY; Ahmadi MH
    J Environ Manage; 2019 Feb; 232():455-461. PubMed ID: 30502614
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study of a thermoacoustic-Stirling engine connected to a piston-crank-flywheel assembly.
    Penelet G; Watanabe T; Biwa T
    J Acoust Soc Am; 2021 Mar; 149(3):1674. PubMed ID: 33765805
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A quantum-dot heat engine operating close to the thermodynamic efficiency limits.
    Josefsson M; Svilans A; Burke AM; Hoffmann EA; Fahlvik S; Thelander C; Leijnse M; Linke H
    Nat Nanotechnol; 2018 Oct; 13(10):920-924. PubMed ID: 30013221
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Finite-Size Heat Source's Heat Capacity on the Efficiency of Heat Engine.
    Ma YH
    Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286771
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carnot, Stirling, and Ericsson stochastic heat engines: Efficiency at maximum power.
    Contreras-Vergara O; Sánchez-Salas N; Valencia-Ortega G; Jiménez-Aquino JI
    Phys Rev E; 2023 Jul; 108(1-1):014123. PubMed ID: 37583186
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators.
    Gelbwaser-Klimovsky D; Kurizki G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022102. PubMed ID: 25215684
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of Material Change on Stirnol Engine: A Combination of NiTiNOL (Shape Memory Alloy) and Gamma Stirling Engine.
    Arif H; Shah A; Ratlamwala TAH; Kamal K; Khan MA
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37110094
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overcoming power-efficiency tradeoff in a micro heat engine by engineered system-bath interactions.
    Krishnamurthy S; Ganapathy R; Sood AK
    Nat Commun; 2023 Oct; 14(1):6842. PubMed ID: 37891165
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Geometric Heat Engines Featuring Power that Grows with Efficiency.
    Raz O; Subaşı Y; Pugatch R
    Phys Rev Lett; 2016 Apr; 116(16):160601. PubMed ID: 27152782
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Achieve higher efficiency at maximum power with finite-time quantum Otto cycle.
    Chen JF; Sun CP; Dong H
    Phys Rev E; 2019 Dec; 100(6-1):062140. PubMed ID: 31962481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimal finite-time Brownian Carnot engine.
    Frim AG; DeWeese MR
    Phys Rev E; 2022 May; 105(5):L052103. PubMed ID: 35706186
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantum lubrication: suppression of friction in a first-principles four-stroke heat engine.
    Feldmann T; Kosloff R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):025107. PubMed ID: 16605384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficiency at maximum power output of an irreversible Carnot-like cycle with internally dissipative friction.
    Wang J; He J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051112. PubMed ID: 23214743
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Theory of the Surface Wettability Angle in the Formation of an Oil Film in Internal Combustion Piston Engines.
    Wróblewski P
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297224
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Atom-doped photon engine: Extracting mechanical work from a quantum system via radiation pressure.
    Tejero Á; Manzano D; Hurtado PI
    Phys Rev E; 2024 Feb; 109(2-1):024141. PubMed ID: 38491628
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantum limit to nonequilibrium heat-engine performance imposed by strong system-reservoir coupling.
    Newman D; Mintert F; Nazir A
    Phys Rev E; 2020 May; 101(5-1):052129. PubMed ID: 32575334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.