These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35327873)

  • 41. Optimal performance of endoreversible quantum refrigerators.
    Correa LA; Palao JP; Adesso G; Alonso D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062124. PubMed ID: 25615061
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases.
    Chen L; Meng Z; Ge Y; Wu F
    Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33925622
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimization, Stability, and Entropy in Endoreversible Heat Engines.
    Gonzalez-Ayala J; Mateos Roco JM; Medina A; Calvo Hernández A
    Entropy (Basel); 2020 Nov; 22(11):. PubMed ID: 33287088
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Volumetric efficiency degradation prediction of axial piston pump based on friction and wear test.
    Yin W; Zhang J; Wang X; Zhang Q; Li Y
    Heliyon; 2024 Sep; 10(17):e37334. PubMed ID: 39296248
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficiency at maximum power of a heat engine working with a two-level atomic system.
    Wang R; Wang J; He J; Ma Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042119. PubMed ID: 23679385
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Constitutive relation for nonlinear response and universality of efficiency at maximum power for tight-coupling heat engines.
    Sheng S; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022136. PubMed ID: 25768487
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The equivalence of minimum entropy production and maximum thermal efficiency in endoreversible heat engines.
    Haseli Y
    Heliyon; 2016 May; 2(5):e00113. PubMed ID: 27441284
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Redesign of a Piston for a Diesel Combustion Engine to Use Biodiesel Blends.
    Noriega Lozano JI; Paredes Rojas JC; Romero Ángeles B; Urriolagoitia Sosa G; Contreras Mendoza BA; Torres San Miguel CR; Polupan G; Urriolagoitia Calderón GM
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34070453
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tuning the performance of a micrometer-sized Stirling engine through reservoir engineering.
    Roy N; Leroux N; Sood AK; Ganapathy R
    Nat Commun; 2021 Aug; 12(1):4927. PubMed ID: 34389717
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermodynamic analysis of a gamma type Stirling engine in an energy recovery system.
    Sowale A; Kolios AJ; Fidalgo B; Somorin T; Parker A; Williams L; Collins M; McAdam E; Tyrrel S
    Energy Convers Manag; 2018 Jun; 165():528-540. PubMed ID: 29861520
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Experimental study of the influence of different resonators on thermoacoustic conversion performance of a thermoacoustic-Stirling heat engine.
    Luo EC; Ling H; Dai W; Yu GY
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1507-9. PubMed ID: 16996100
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Laser engines operating by resonance absorption.
    Garbuny M; Pechersky MJ
    Appl Opt; 1976 May; 15(5):1141-57. PubMed ID: 20165143
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design of heat exchanger for Ericsson-Brayton piston engine.
    Durcansky P; Papucik S; Jandacka J; Holubcik M; Nosek R
    ScientificWorldJournal; 2014; 2014():138254. PubMed ID: 24977174
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Work and power fluctuations in a critical heat engine.
    Holubec V; Ryabov A
    Phys Rev E; 2017 Sep; 96(3-1):030102. PubMed ID: 29347002
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Four-Objective Optimization for an Irreversible Porous Medium Cycle with Linear Variation in Working Fluid's Specific Heat.
    Zang P; Chen L; Ge Y; Shi S; Feng H
    Entropy (Basel); 2022 Aug; 24(8):. PubMed ID: 36010738
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Roles of dry friction in the fluctuating motion of an adiabatic piston.
    Sano TG; Hayakawa H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032104. PubMed ID: 24730787
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Experimental and simulation study on heat transfer characteristics of aluminium alloy piston under transition conditions.
    Liu Y; Lei J; Wang D; Deng X; Wen J; Wen Z
    Sci Rep; 2022 Jun; 12(1):9262. PubMed ID: 35665771
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimal low symmetric dissipation Carnot engines and refrigerators.
    de Tomás C; Hernández AC; Roco JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):010104. PubMed ID: 22400500
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of the linear oscillation dynamics of Fluidyne engines.
    Ito M; Murti P; Tsuboi S; Shoji E; Biwa T
    J Acoust Soc Am; 2022 Feb; 151(2):1133. PubMed ID: 35232089
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Finite-time quantum Otto engine: Surpassing the quasistatic efficiency due to friction.
    Lee S; Ha M; Park JM; Jeong H
    Phys Rev E; 2020 Feb; 101(2-1):022127. PubMed ID: 32168587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.