These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Epigenetic regulation in Parkinson's disease. Labbé C; Lorenzo-Betancor O; Ross OA Acta Neuropathol; 2016 Oct; 132(4):515-30. PubMed ID: 27358065 [TBL] [Abstract][Full Text] [Related]
6. Biomarkers of Parkinson's disease: present and future. Miller DB; O'Callaghan JP Metabolism; 2015 Mar; 64(3 Suppl 1):S40-6. PubMed ID: 25510818 [TBL] [Abstract][Full Text] [Related]
7. Age-dependent nigral dopaminergic neurodegeneration and α-synuclein accumulation in RGS6-deficient mice. Luo Z; Ahlers-Dannen KE; Spicer MM; Yang J; Alberico S; Stevens HE; Narayanan NS; Fisher RA JCI Insight; 2019 May; 5(13):. PubMed ID: 31120439 [TBL] [Abstract][Full Text] [Related]
8. Alpha-synuclein, epigenetics, mitochondria, metabolism, calcium traffic, & circadian dysfunction in Parkinson's disease. An integrated strategy for management. Phillipson OT Ageing Res Rev; 2017 Nov; 40():149-167. PubMed ID: 28986235 [TBL] [Abstract][Full Text] [Related]
9. Current perspective of mitochondrial biology in Parkinson's disease. Ammal Kaidery N; Thomas B Neurochem Int; 2018 Jul; 117():91-113. PubMed ID: 29550604 [TBL] [Abstract][Full Text] [Related]
10. Does Developmental Variability in the Number of Midbrain Dopamine Neurons Affect Individual Risk for Sporadic Parkinson's Disease? von Linstow CU; DeLano-Taylor M; Kordower JH; Brundin P J Parkinsons Dis; 2020; 10(2):405-411. PubMed ID: 31958098 [TBL] [Abstract][Full Text] [Related]
11. The yin and yang of α-synuclein-associated epigenetics in Parkinson's disease. Pavlou MAS; Pinho R; Paiva I; Outeiro TF Brain; 2017 Apr; 140(4):878-886. PubMed ID: 27585855 [TBL] [Abstract][Full Text] [Related]
12. Accumulation of mitochondrial DNA deletions within dopaminergic neurons triggers neuroprotective mechanisms. Perier C; Bender A; García-Arumí E; Melià MJ; Bové J; Laub C; Klopstock T; Elstner M; Mounsey RB; Teismann P; Prolla T; Andreu AL; Vila M Brain; 2013 Aug; 136(Pt 8):2369-78. PubMed ID: 23884809 [TBL] [Abstract][Full Text] [Related]
13. HOTAIR drives autophagy in midbrain dopaminergic neurons in the substantia nigra compacta in a mouse model of Parkinson's disease by elevating NPTX2 Lang Y; Li Y; Yu H; Lin L; Chen X; Wang S; Zhang H Aging (Albany NY); 2020 May; 12(9):7660-7678. PubMed ID: 32396526 [TBL] [Abstract][Full Text] [Related]
14. Emerging Role of Long Noncoding RNAs in Regulating Inflammasome-Mediated Neurodegeneration in Parkinson's Disease. Sivagurunathan N; Rahamathulla MP; Al-Dossary H; Calivarathan L Mol Neurobiol; 2024 Jul; 61(7):4619-4632. PubMed ID: 38105409 [TBL] [Abstract][Full Text] [Related]
15. Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse. Perfeito R; Cunha-Oliveira T; Rego AC Free Radic Biol Med; 2013 Sep; 62():186-201. PubMed ID: 23743292 [TBL] [Abstract][Full Text] [Related]
16. Parkinson's Disease: From Genetics and Epigenetics to Treatment, a miRNA-Based Strategy. Paccosi E; Proietti-De-Santis L Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298496 [TBL] [Abstract][Full Text] [Related]
17. Downregulation of miR-124 in MPTP-treated mouse model of Parkinson's disease and MPP iodide-treated MN9D cells modulates the expression of the calpain/cdk5 pathway proteins. Kanagaraj N; Beiping H; Dheen ST; Tay SS Neuroscience; 2014 Jul; 272():167-79. PubMed ID: 24792712 [TBL] [Abstract][Full Text] [Related]
18. DNA methylation in Parkinson's disease. Wüllner U; Kaut O; deBoni L; Piston D; Schmitt I J Neurochem; 2016 Oct; 139 Suppl 1():108-120. PubMed ID: 27120258 [TBL] [Abstract][Full Text] [Related]
20. RGS Proteins as Critical Regulators of Motor Function and Their Implications in Parkinson's Disease. Ahlers-Dannen KE; Spicer MM; Fisher RA Mol Pharmacol; 2020 Dec; 98(6):730-738. PubMed ID: 32015009 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]