These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35328056)

  • 61. A Nucleus-Localized Long Non-Coding RNA Enhances Drought and Salt Stress Tolerance.
    Qin T; Zhao H; Cui P; Albesher N; Xiong L
    Plant Physiol; 2017 Nov; 175(3):1321-1336. PubMed ID: 28887353
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A rice LSD1-like-type ZFP gene OsLOL5 enhances saline-alkaline tolerance in transgenic Arabidopsis thaliana, yeast and rice.
    Guan QJ; Ma HY; Wang ZJ; Wang ZY; Bu QY; Liu SK
    BMC Genomics; 2016 Feb; 17():142. PubMed ID: 26920613
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Simultaneous Promotion of Salt Tolerance and Phenolic Acid Biosynthesis in
    Li T; Zhang S; Li Y; Zhang L; Song W; Chen C; Ruan W
    Int J Mol Sci; 2023 Oct; 24(21):. PubMed ID: 37958490
    [TBL] [Abstract][Full Text] [Related]  

  • 64. PacMYBA, a sweet cherry R2R3-MYB transcription factor, is a positive regulator of salt stress tolerance and pathogen resistance.
    Shen X; Guo X; Guo X; Zhao D; Zhao W; Chen J; Li T
    Plant Physiol Biochem; 2017 Mar; 112():302-311. PubMed ID: 28126679
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A Novel Sweetpotato WRKY Transcription Factor, IbWRKY2, Positively Regulates Drought and Salt Tolerance in Transgenic
    Zhu H; Zhou Y; Zhai H; He S; Zhao N; Liu Q
    Biomolecules; 2020 Mar; 10(4):. PubMed ID: 32230780
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Two P5CS genes from common bean exhibiting different tolerance to salt stress in transgenic Arabidopsis.
    Chen JB; Yang JW; Zhang ZY; Feng XF; Wang SM
    J Genet; 2013 Dec; 92(3):461-9. PubMed ID: 24371167
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A Cloned Gene
    Qu Y; Bian Z; Teixeira da Silva JA; Nong Q; Qu W; Ma G
    Front Biosci (Landmark Ed); 2023 Apr; 28(4):78. PubMed ID: 37114532
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Overexpression of CaDSR6 increases tolerance to drought and salt stresses in transgenic Arabidopsis plants.
    Kim EY; Seo YS; Park KY; Kim SJ; Kim WT
    Gene; 2014 Nov; 552(1):146-54. PubMed ID: 25234727
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Characterization of SEC14 family in wheat and the function of TaSEC14-7B in salt stress tolerance.
    Qin Y; Zhang B; Wang Y; Su R
    Plant Physiol Biochem; 2023 Sep; 202():107926. PubMed ID: 37566993
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A salicylic acid inducible mulberry WRKY transcription factor, MiWRKY53 is involved in plant defence response.
    Negi N; Khurana P
    Plant Cell Rep; 2021 Nov; 40(11):2151-2171. PubMed ID: 33997916
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A novel sweetpotato bZIP transcription factor gene, IbbZIP1, is involved in salt and drought tolerance in transgenic Arabidopsis.
    Kang C; Zhai H; He S; Zhao N; Liu Q
    Plant Cell Rep; 2019 Nov; 38(11):1373-1382. PubMed ID: 31183509
    [TBL] [Abstract][Full Text] [Related]  

  • 72. ITN1, a novel gene encoding an ankyrin-repeat protein that affects the ABA-mediated production of reactive oxygen species and is involved in salt-stress tolerance in Arabidopsis thaliana.
    Sakamoto H; Matsuda O; Iba K
    Plant J; 2008 Nov; 56(3):411-22. PubMed ID: 18643991
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Isolation and functional characterization of a cold responsive phosphatidylinositol transfer-associated protein, ZmSEC14p, from maize (Zea may L.).
    Wang X; Shan X; Xue C; Wu Y; Su S; Li S; Liu H; Jiang Y; Zhang Y; Yuan Y
    Plant Cell Rep; 2016 Aug; 35(8):1671-86. PubMed ID: 27061906
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Overexpression of Grain Amaranth (Amaranthus hypochondriacus) AhERF or AhDOF Transcription Factors in Arabidopsis thaliana Increases Water Deficit- and Salt-Stress Tolerance, Respectively, via Contrasting Stress-Amelioration Mechanisms.
    Massange-Sánchez JA; Palmeros-Suárez PA; Espitia-Rangel E; Rodríguez-Arévalo I; Sánchez-Segura L; Martínez-Gallardo NA; Alatorre-Cobos F; Tiessen A; Délano-Frier JP
    PLoS One; 2016; 11(10):e0164280. PubMed ID: 27749893
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Mulberry RGS negatively regulates salt stress response and tolerance.
    Liu C; Fan W; Zhu P; Xia Z; Hu J; Zhao A
    Plant Signal Behav; 2019; 14(12):1672512. PubMed ID: 31559897
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Over-expression of a plasma membrane H
    Fan Y; Wan S; Jiang Y; Xia Y; Chen X; Gao M; Cao Y; Luo Y; Zhou Y; Jiang X
    Protoplasma; 2018 Nov; 255(6):1827-1837. PubMed ID: 29948367
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Functional Analysis of Ion Transport Properties and Salt Tolerance Mechanisms of RtHKT1 from the Recretohalophyte Reaumuria trigyna.
    Li N; Du C; Ma B; Gao Z; Wu Z; Zheng L; Niu Y; Wang Y
    Plant Cell Physiol; 2019 Jan; 60(1):85-106. PubMed ID: 30239906
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Heterologous expression of a Fraxinus velutina SnRK2 gene in Arabidopsis increases salt tolerance by modifying root development and ion homeostasis.
    Zhang M; Liu L; Chen C; Zhao Y; Pang C; Chen M
    Plant Cell Rep; 2022 Sep; 41(9):1895-1906. PubMed ID: 35794394
    [TBL] [Abstract][Full Text] [Related]  

  • 79. An Ipomoea batatas iron-sulfur cluster scaffold protein gene, IbNFU1, is involved in salt tolerance.
    Liu D; Wang L; Liu C; Song X; He S; Zhai H; Liu Q
    PLoS One; 2014; 9(4):e93935. PubMed ID: 24695556
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Potential Involvement of
    An H; Wang D; Yu L; Wu H; Qin Y; Zhang S; Ji X; Xin Y; Li X
    Genes (Basel); 2024 Jun; 15(7):. PubMed ID: 39062632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.