BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35328083)

  • 1. Identification of Potential Diagnostic Biomarkers and Biological Pathways in Hypertrophic Cardiomyopathy Based on Bioinformatics Analysis.
    Yu T; Huang Z; Pu Z
    Genes (Basel); 2022 Mar; 13(3):. PubMed ID: 35328083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weighted gene co-expression network analysis revealed key biomarkers associated with the diagnosis of hypertrophic cardiomyopathy.
    Li X; Wang C; Zhang X; Liu J; Wang Y; Li C; Guo D
    Hereditas; 2020 Oct; 157(1):42. PubMed ID: 33099311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the Immune Status of Hypertrophic Cardiomyopathy by Integrated Analysis of Bulk- and Single-Cell RNA Sequencing Data.
    Zhao W; Wu T; Zhan J; Dong Z
    Comput Math Methods Med; 2022; 2022():7153491. PubMed ID: 36238494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and verification of promising diagnostic biomarkers in patients with hypertrophic cardiomyopathy associate with immune cell infiltration characteristics.
    Zheng X; Yang Y; Huang Fu C; Huang R
    Life Sci; 2021 Nov; 285():119956. PubMed ID: 34520765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and validation of pyroptosis-related genes as potential biomarkers for hypertrophic cardiomyopathy: A comprehensive bioinformatics analysis.
    Tang X; Shen Y; Lu Y; He W; Nie Y; Fang X; Cai J; Si X; Zhu Y
    Medicine (Baltimore); 2024 Jan; 103(4):e36799. PubMed ID: 38277535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of diagnostic gene biomarkers for hypertrophic cardiomyopathy by integrated machine learning.
    You H; Dong M
    J Int Med Res; 2023 Nov; 51(11):3000605231213781. PubMed ID: 38006610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinformatics and Immune Infiltration Analyses Reveal the Key Pathway and Immune Cells in the Pathogenesis of Hypertrophic Cardiomyopathy.
    Zhang XZ; Zhang S; Tang TT; Cheng X
    Front Cardiovasc Med; 2021; 8():696321. PubMed ID: 34497835
    [No Abstract]   [Full Text] [Related]  

  • 8. Weighted gene coexpression network analysis reveals negative regulation of hypertrophic cardiomyopathy by carboxylesterase 1 and cathepsin C.
    Kuang Y; Wang J; Dong Y; Cheng Y; Li H; Ji Y; Gao H; Cao X
    Gen Physiol Biophys; 2023 Jul; 42(4):361-372. PubMed ID: 37449320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of biomarkers correlated with hypertrophic cardiomyopathy with co-expression analysis.
    Chen R; Ge T; Jiang W; Huo J; Chang Q; Geng J; Shan Q
    J Cell Physiol; 2019 Dec; 234(12):21999-22008. PubMed ID: 31059139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the circulating transcriptome expression profile and identification of novel miRNA biomarkers in hypertrophic cardiomyopathy.
    Guo L; Cai Y; Wang B; Zhang F; Zhao H; Liu L; Tao L
    Eur J Med Res; 2023 Jun; 28(1):205. PubMed ID: 37391825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of hub biomarkers and immune cell infiltration characteristics of polymyositis by bioinformatics analysis.
    Jia Q; Hao RJ; Lu XJ; Sun SQ; Shao JJ; Su X; Huang QF
    Front Immunol; 2022; 13():1002500. PubMed ID: 36225941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Underlying Hub Genes Associated with Hypertrophic Cardiomyopathy by Integrated Bioinformatics Analysis.
    Ma Z; Wang X; Lv Q; Gong Y; Xia M; Zhuang L; Lu X; Yang Y; Zhang W; Fu G; Ye Y; Lai D
    Pharmgenomics Pers Med; 2021; 14():823-837. PubMed ID: 34285551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and verification of IGFBP3 and YTHDC1 as biomarkers associated with immune infiltration and mitophagy in hypertrophic cardiomyopathy.
    Li Y; Zhang W; Dai Y; Chen K
    Front Genet; 2022; 13():986995. PubMed ID: 36267414
    [No Abstract]   [Full Text] [Related]  

  • 14. Dysfunctional Network and Mutation Genes of Hypertrophic Cardiomyopathy.
    Cui Y; Liu C; Luo J; Liang J
    J Healthc Eng; 2022; 2022():8680178. PubMed ID: 35126952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of circulating hub long noncoding RNAs associated with hypertrophic cardiomyopathy using weighted correlation network analysis.
    Guo Q; Wang J; Sun R; Gu W; He Z; Chen Q; Liu W; Chen Y; Wang J; Zhang Y
    Mol Med Rep; 2020 Dec; 22(6):4637-4644. PubMed ID: 33174017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of important modules and biomarkers in diabetic cardiomyopathy based on WGCNA and LASSO analysis.
    Cui M; Wu H; An Y; Liu Y; Wei L; Qi X
    Front Endocrinol (Lausanne); 2024; 15():1185062. PubMed ID: 38469146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteomodulin is a Potential Genetic Target for Hypertrophic Cardiomyopathy.
    Guo W; Feng W; Fan X; Huang J; Ou C; Chen M
    Biochem Genet; 2021 Oct; 59(5):1185-1202. PubMed ID: 33715137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and Verification of Feature Immune-Related Genes in Patients With Hypertrophic Cardiomyopathy Based on Bioinformatics Analyses.
    Zheng X; Liu G; Huang R
    Front Cardiovasc Med; 2021; 8():752559. PubMed ID: 34765659
    [No Abstract]   [Full Text] [Related]  

  • 19. Identification and analysis of key hypoxia- and immune-related genes in hypertrophic cardiomyopathy.
    Yu H; Gu L; Du L; Dong Z; Li Z; Yu M; Yin Y; Wang Y; Yu L; Ma H
    Biol Res; 2023 Aug; 56(1):45. PubMed ID: 37559135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dysregulation and imbalance of innate and adaptive immunity are involved in the cardiomyopathy progression.
    He B; Quan LP; Cai CY; Yu DY; Yan W; Wei QJ; Zhang Z; Huang XN; Liu L
    Front Cardiovasc Med; 2022; 9():973279. PubMed ID: 36148059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.