BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 35328349)

  • 1. HLA-G and Other Immune Checkpoint Molecules as Targets for Novel Combined Immunotherapies.
    Morandi F; Airoldi I
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Systematic Review of Immunotherapy in Urologic Cancer: Evolving Roles for Targeting of CTLA-4, PD-1/PD-L1, and HLA-G.
    Carosella ED; Ploussard G; LeMaoult J; Desgrandchamps F
    Eur Urol; 2015 Aug; 68(2):267-79. PubMed ID: 25824720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soluble immune checkpoints CTLA-4, HLA-G, PD-1, and PD-L1 are associated with endometriosis-related infertility.
    Santoso B; Sa'adi A; Dwiningsih SR; Tunjungseto A; Widyanugraha MYA; Mufid AF; Rahmawati NY; Ahsan F
    Am J Reprod Immunol; 2020 Oct; 84(4):e13296. PubMed ID: 32593225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Clinical Approaches and Emerging Evidence on Immune-Checkpoint Inhibitors as Anti-Cancer Therapeutics: CTLA-4 and PD-1 Pathways and Beyond.
    Christodoulou MI; Zaravinos A
    Crit Rev Immunol; 2019; 39(5):379-408. PubMed ID: 32422018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy.
    Dougall WC; Kurtulus S; Smyth MJ; Anderson AC
    Immunol Rev; 2017 Mar; 276(1):112-120. PubMed ID: 28258695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting Checkpoint Receptors and Molecules for Therapeutic Modulation of Natural Killer Cells.
    Kim N; Kim HS
    Front Immunol; 2018; 9():2041. PubMed ID: 30250471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting immune checkpoints in hematological malignancies.
    Salik B; Smyth MJ; Nakamura K
    J Hematol Oncol; 2020 Aug; 13(1):111. PubMed ID: 32787882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive Transcriptomic Analysis Reveals the Role of the Immune Checkpoint HLA-G Molecule in Cancers.
    Xu HH; Gan J; Xu DP; Li L; Yan WH
    Front Immunol; 2021; 12():614773. PubMed ID: 34276642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor-induced escape mechanisms and their association with resistance to checkpoint inhibitor therapy.
    Friedrich M; Jasinski-Bergner S; Lazaridou MF; Subbarayan K; Massa C; Tretbar S; Mueller A; Handke D; Biehl K; Bukur J; Donia M; Mandelboim O; Seliger B
    Cancer Immunol Immunother; 2019 Oct; 68(10):1689-1700. PubMed ID: 31375885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Next Immune-Checkpoint Inhibitors: PD-1/PD-L1 Blockade in Melanoma.
    Mahoney KM; Freeman GJ; McDermott DF
    Clin Ther; 2015 Apr; 37(4):764-82. PubMed ID: 25823918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HLA-G/LILRBs: A Cancer Immunotherapy Challenge.
    Carosella ED; Gregori S; Tronik-Le Roux D
    Trends Cancer; 2021 May; 7(5):389-392. PubMed ID: 33563576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HLA-G Neo-Expression on Tumors.
    Loustau M; Anna F; Dréan R; Lecomte M; Langlade-Demoyen P; Caumartin J
    Front Immunol; 2020; 11():1685. PubMed ID: 32922387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. News on immune checkpoint inhibitors as immunotherapy strategies in adult and pediatric solid tumors.
    Melaiu O; Lucarini V; Giovannoni R; Fruci D; Gemignani F
    Semin Cancer Biol; 2022 Feb; 79():18-43. PubMed ID: 32659257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soluble HLA-G and HLA-G Bearing Extracellular Vesicles Affect ILT-2 Positive and ILT-2 Negative CD8 T Cells Complementary.
    Schwich E; Hò GT; LeMaoult J; Bade-Döding C; Carosella ED; Horn PA; Rebmann V
    Front Immunol; 2020; 11():2046. PubMed ID: 32973812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HLA-G gene editing in tumor cell lines as a novel alternative in cancer immunotherapy.
    Palma MB; Tronik-Le Roux D; Amín G; Castañeda S; Möbbs AM; Scarafia MA; La Greca A; Daouya M; Poras I; Inda AM; Moro LN; Carosella ED; García MN; Miriuka SG
    Sci Rep; 2021 Nov; 11(1):22158. PubMed ID: 34773056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CD8
    Dumont C; Jacquier A; Verine J; Noel F; Goujon A; Wu CL; Hung TM; Desgrandchamps F; Culine S; Carosella ED; Rouas-Freiss N; LeMaoult J
    Cancer Immunol Res; 2019 Oct; 7(10):1619-1632. PubMed ID: 31451484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prognostic Significance of Immune Checkpoints HLA-G/ILT-2/4 and PD-L1 in Colorectal Cancer.
    Chen QY; Chen YX; Han QY; Zhang JG; Zhou WJ; Zhang X; Ye YH; Yan WH; Lin A
    Front Immunol; 2021; 12():679090. PubMed ID: 34054869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Checkpoint blocking antibodies in cancer immunotherapy.
    Kyi C; Postow MA
    FEBS Lett; 2014 Jan; 588(2):368-76. PubMed ID: 24161671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulation of the Immune System for Cancer Defeat: A Focus on the T Cell Inhibitory Checkpoint Molecules.
    D'Arrigo P; Tufano M; Rea A; Vigorito V; Novizio N; Russo S; Romano MF; Romano S
    Curr Med Chem; 2020; 27(15):2402-2448. PubMed ID: 30398102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The future of immune checkpoint cancer therapy after PD-1 and CTLA-4.
    Hahn AW; Gill DM; Pal SK; Agarwal N
    Immunotherapy; 2017 Jun; 9(8):681-692. PubMed ID: 28653573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.