These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 35328578)
1. Molecular Dynamics Simulations of Transmembrane Cyclic Peptide Nanotubes Using Classical Force Fields, Hydrogen Mass Repartitioning, and Hydrogen Isotope Exchange Methods: A Critical Comparison. Conde D; Garrido PF; Calvelo M; Piñeiro Á; Garcia-Fandino R Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328578 [TBL] [Abstract][Full Text] [Related]
2. Effect of Water Models on Transmembrane Self-Assembled Cyclic Peptide Nanotubes. Calvelo M; Lynch CI; Granja JR; Sansom MSP; Garcia-Fandiño R ACS Nano; 2021 Apr; 15(4):7053-7064. PubMed ID: 33739081 [TBL] [Abstract][Full Text] [Related]
3. Membrane targeting antimicrobial cyclic peptide nanotubes - an experimental and computational study. Claro B; González-Freire E; Calvelo M; Bessa LJ; Goormaghtigh E; Amorín M; Granja JR; Garcia-Fandiño R; Bastos M Colloids Surf B Biointerfaces; 2020 Dec; 196():111349. PubMed ID: 32992285 [TBL] [Abstract][Full Text] [Related]
4. Coarse-grained molecular dynamics study of cyclic peptide nanotube insertion into a lipid bilayer. Hwang H J Phys Chem A; 2009 Apr; 113(16):4780-7. PubMed ID: 19035669 [TBL] [Abstract][Full Text] [Related]
5. Molecular dynamics simulations for designing biomimetic pores based on internally functionalized self-assembling α,γ-peptide nanotubes. Calvelo M; Vázquez S; García-Fandiño R Phys Chem Chem Phys; 2015 Nov; 17(43):28586-601. PubMed ID: 26443433 [TBL] [Abstract][Full Text] [Related]
6. Glucose derivatives substitution and cyclic peptide diameter effects on the stability of the self-assembled cyclic peptide nanotubes; a joint QM/MD study. Khavani M; Izadyar M; Housaindokht MR J Mol Graph Model; 2017 Jan; 71():28-39. PubMed ID: 27837688 [TBL] [Abstract][Full Text] [Related]
7. Competitive double-switched self-assembled cyclic peptide nanotubes: a dual internal and external control. Calvelo M; Granja JR; Garcia-Fandino R Phys Chem Chem Phys; 2019 Oct; 21(37):20750-20756. PubMed ID: 31513191 [TBL] [Abstract][Full Text] [Related]
8. Accelerating Membrane Simulations with Hydrogen Mass Repartitioning. Balusek C; Hwang H; Lau CH; Lundquist K; Hazel A; Pavlova A; Lynch DL; Reggio PH; Wang Y; Gumbart JC J Chem Theory Comput; 2019 Aug; 15(8):4673-4686. PubMed ID: 31265271 [TBL] [Abstract][Full Text] [Related]
9. Self-assembling cyclic peptides: molecular dynamics studies of dimers in polar and nonpolar solvents. Khurana E; Nielsen SO; Ensing B; Klein ML J Phys Chem B; 2006 Sep; 110(38):18965-72. PubMed ID: 16986891 [TBL] [Abstract][Full Text] [Related]
10. A molecular dynamics investigation on transporting mechanism of glucose through a cyclic peptide nanotube. Joozdani FA; Taghdir M J Biomol Struct Dyn; 2021 Apr; 39(6):2230-2241. PubMed ID: 32249695 [TBL] [Abstract][Full Text] [Related]
11. Molecular dynamics and umbrella sampling study of stabilizing factors in cyclic peptide-based nanotubes. Vijayaraj R; Van Damme S; Bultinck P; Subramanian V J Phys Chem B; 2012 Aug; 116(33):9922-33. PubMed ID: 22804626 [TBL] [Abstract][Full Text] [Related]
12. Molecular dynamics simulation for the structure of the water chain in a transmembrane peptide nanotube. Liu J; Fan J; Tang M; Zhou W J Phys Chem A; 2010 Feb; 114(6):2376-83. PubMed ID: 20099797 [TBL] [Abstract][Full Text] [Related]
13. In silico study of amphiphilic nanotubes based on cyclic peptides in polar and non-polar solvent. Vijayakumar V; Vijayaraj R; Peters GH J Mol Model; 2016 Nov; 22(11):264. PubMed ID: 27734210 [TBL] [Abstract][Full Text] [Related]
14. Structure and stability of cyclic peptide based nanotubes: a molecular dynamics study of the influence of amino acid composition. Vijayaraj R; Van Damme S; Bultinck P; Subramanian V Phys Chem Chem Phys; 2012 Nov; 14(43):15135-44. PubMed ID: 23041975 [TBL] [Abstract][Full Text] [Related]
15. Theoretical studies on the transport mechanism of 5-fluorouracil through cyclic peptide based nanotubes. Vijayaraj R; Van Damme S; Bultinck P; Subramanian V Phys Chem Chem Phys; 2013 Jan; 15(4):1260-70. PubMed ID: 23229174 [TBL] [Abstract][Full Text] [Related]
16. Simulating Bacterial Membrane Models at the Atomistic Level: A Force Field Comparison. Blanco-González A; Wurl A; Mendes Ferreira T; Piñeiro Á; Garcia-Fandino R J Chem Theory Comput; 2024 Sep; ():. PubMed ID: 39226695 [TBL] [Abstract][Full Text] [Related]
17. Thermo-mechanical stability and strength of peptide nanostructures from molecular dynamics: self-assembled cyclic peptide nanotubes. Diaz JA; Cağin T Nanotechnology; 2010 Mar; 21(11):115703. PubMed ID: 20173235 [TBL] [Abstract][Full Text] [Related]
18. Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. Hopkins CW; Le Grand S; Walker RC; Roitberg AE J Chem Theory Comput; 2015 Apr; 11(4):1864-74. PubMed ID: 26574392 [TBL] [Abstract][Full Text] [Related]
19. Tunable synthesis of self-assembled cyclic peptide nanotubes and nanoparticles. Sun L; Fan Z; Wang Y; Huang Y; Schmidt M; Zhang M Soft Matter; 2015 May; 11(19):3822-32. PubMed ID: 25858105 [TBL] [Abstract][Full Text] [Related]
20. Investigation of structures and properties of cyclic peptide nanotubes by experiment and molecular dynamics. Zhu J; Cheng J; Liao Z; Lai Z; Liu B J Comput Aided Mol Des; 2008 Nov; 22(11):773-81. PubMed ID: 18385947 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]