These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 35328578)

  • 21. A combined molecular dynamic and quantum mechanic study of the solvent and guest molecule effect on the stability and length of heterocyclic peptide nanotubes.
    Izadyar M; Khavani M; Housaindokht MR
    Phys Chem Chem Phys; 2015 May; 17(17):11382-91. PubMed ID: 25848975
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of structures and properties of cyclic peptide nanotubes by experiment and molecular dynamics.
    Zhu J; Cheng J; Liao Z; Lai Z; Liu B
    J Comput Aided Mol Des; 2008 Nov; 22(11):773-81. PubMed ID: 18385947
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular insights on the cyclic peptide nanotube-mediated transportation of antitumor drug 5-fluorouracil.
    Liu H; Chen J; Shen Q; Fu W; Wu W
    Mol Pharm; 2010 Dec; 7(6):1985-94. PubMed ID: 20964368
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular dynamics investigation of an oriented cyclic peptide nanotube in DMPC bilayers.
    Tarek M; Maigret B; Chipot C
    Biophys J; 2003 Oct; 85(4):2287-98. PubMed ID: 14507693
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly.
    Aliev AE; Courtier-Murias D
    J Phys Chem B; 2010 Sep; 114(38):12358-75. PubMed ID: 20825228
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular Dynamics Simulation Study of the Protonation State Dependence of Glutamic Acid Transport through a Cyclic Peptide Nanotube.
    Kim N; Lee JH; Song Y; Lee JH; Schatz GC; Hwang H
    J Phys Chem B; 2023 Jul; 127(27):6061-6072. PubMed ID: 37369069
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic behavior and selective adsorption of a methanol/water mixture inside a cyclic peptide nanotube.
    Si X; Fan J; Xu J; Zhao X; Zhang L; Qu M
    J Mol Model; 2018 Jun; 24(7):184. PubMed ID: 29959542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Side-Chain Interactions in d/l Peptide Nanotubes: Studies by Crystallography, NMR Spectroscopy and Molecular Dynamics.
    Silk MR; Price JR; Mohanty B; Leiros HS; Lund BA; Thompson PE; Chalmers DK
    Chemistry; 2021 Oct; 27(58):14489-14500. PubMed ID: 34415083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A critical assessment of force field accuracy against NMR data for cyclic peptides containing β-amino acids.
    Paissoni C; Nardelli F; Zanella S; Curnis F; Belvisi L; Musco G; Ghitti M
    Phys Chem Chem Phys; 2018 Jun; 20(23):15807-15816. PubMed ID: 29845162
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study on the Assembly Mechanisms and Transport Properties of Transmembrane End-Charged Cyclic Peptide Nanotubes.
    Gong T; Fan J
    J Chem Inf Model; 2021 Jun; 61(6):2754-2765. PubMed ID: 34128668
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of the diameter of cyclic peptide nanotube on its chirality discrimination.
    Farrokhpour H; Mansouri A; Rajabi AR; Najafi Chermahini A
    J Biomol Struct Dyn; 2019 Feb; 37(3):691-701. PubMed ID: 29393002
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Why the OPLS-AA force field cannot produce the β-hairpin structure of H1 peptide in solution when comparing with the GROMOS 43A1 force field?
    Cao Z; Liu L; Wang J
    J Biomol Struct Dyn; 2011 Dec; 29(3):527-39. PubMed ID: 22066538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe in.
    Ditzler MA; Otyepka M; Sponer J; Walter NG
    Acc Chem Res; 2010 Jan; 43(1):40-7. PubMed ID: 19754142
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transport properties of simple organic molecules in a transmembrane cyclic peptide nanotube.
    Xu J; Fan JF; Zhang MM; Weng PP; Lin HF
    J Mol Model; 2016 May; 22(5):107. PubMed ID: 27083567
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Different transport behaviors of NH4 (+) and NH3 in transmembrane cyclic peptide nanotubes.
    Zhang M; Fan J; Xu J; Weng P; Lin H
    J Mol Model; 2016 Oct; 22(10):233. PubMed ID: 27600817
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Uncovering the mechanisms of cyclic peptide self-assembly in membranes with the chirality-aware MA(R/S)TINI forcefield.
    Cabezón A; Calvelo M; Granja JR; Piñeiro Á; Garcia-Fandino R
    J Colloid Interface Sci; 2023 Jul; 642():84-99. PubMed ID: 37001460
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimized Hydrogen Mass Repartitioning Scheme Combined with Accurate Temperature/Pressure Evaluations for Thermodynamic and Kinetic Properties of Biological Systems.
    Jung J; Kasahara K; Kobayashi C; Oshima H; Mori T; Sugita Y
    J Chem Theory Comput; 2021 Aug; 17(8):5312-5321. PubMed ID: 34278793
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A comparative study of two different force fields on structural and thermodynamics character of H1 peptide via molecular dynamics simulations.
    Cao Z; Wang J
    J Biomol Struct Dyn; 2010 Apr; 27(5):651-61. PubMed ID: 20085382
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New cyclic peptide assemblies with hydrophobic cavities: the structural and thermodynamic basis of a new class of peptide nanotubes.
    Amorín M; Castedo L; Granja JR
    J Am Chem Soc; 2003 Mar; 125(10):2844-5. PubMed ID: 12617629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.