These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35328604)

  • 1. New Core-Shell Nanostructures for FRET Studies: Synthesis, Characterization, and Quantitative Analysis.
    Synak A; Adamska E; Kułak L; Grobelna B; Niedziałkowski P; Bojarski P
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Core-shell nanoarchitectures: a strategy to improve the efficiency of luminescence resonance energy transfer.
    Song C; Ye Z; Wang G; Yuan J; Guan Y
    ACS Nano; 2010 Sep; 4(9):5389-97. PubMed ID: 20681528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering the Compositional Architecture of Core-Shell Upconverting Lanthanide-Doped Nanoparticles for Optimal Luminescent Donor in Resonance Energy Transfer: The Effects of Energy Migration and Storage.
    Pilch-Wrobel A; Kotulska AM; Lahtinen S; Soukka T; Bednarkiewicz A
    Small; 2022 May; 18(18):e2200464. PubMed ID: 35355389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FRET-based small-molecule fluorescent probes: rational design and bioimaging applications.
    Yuan L; Lin W; Zheng K; Zhu S
    Acc Chem Res; 2013 Jul; 46(7):1462-73. PubMed ID: 23419062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing Upconversion Nanoparticles for FRET Biosensing.
    Pini F; Francés-Soriano L; Andrigo V; Natile MM; Hildebrandt N
    ACS Nano; 2023 Mar; 17(5):4971-4984. PubMed ID: 36867492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Er
    Francés-Soriano L; Peruffo N; Natile MM; Hildebrandt N
    Analyst; 2020 Apr; 145(7):2543-2553. PubMed ID: 32043497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of selective plasmon-exciton coupling in nonradiative energy transfer: donor-selective versus acceptor-selective plexcitons.
    Ozel T; Hernandez-Martinez PL; Mutlugun E; Akin O; Nizamoglu S; Ozel IO; Zhang Q; Xiong Q; Demir HV
    Nano Lett; 2013 Jul; 13(7):3065-72. PubMed ID: 23755992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Förster resonance energy transfer investigations using quantum-dot fluorophores.
    Clapp AR; Medintz IL; Mattoussi H
    Chemphyschem; 2006 Jan; 7(1):47-57. PubMed ID: 16370019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of the compartmentalization of core-shell nanoparticles through fluorescence energy transfer of dopants.
    Chávez JL; Jiang H; Duran RS
    Nanotechnology; 2010 Feb; 21(5):055703. PubMed ID: 20023306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors.
    Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H
    J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simulation study on the influence of energy migration and relative interaction strengths of homo- and hetero-FRET on the net FRET efficiency.
    Rout J; Swain BC; Sakshi ; Biswas S; Das AK; Tripathy U
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 226():117599. PubMed ID: 31751800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence resonance energy transfer in ferritin labeled with multiple fluorescent dyes.
    Fernández B; Gálvez N; Sánchez P; Cuesta R; Bermejo R; Domínguez-Vera JM
    J Biol Inorg Chem; 2008 Mar; 13(3):349-55. PubMed ID: 18046587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directional Photonic Wire Mediated by Homo-Förster Resonance Energy Transfer on a DNA Origami Platform.
    Nicoli F; Barth A; Bae W; Neukirchinger F; Crevenna AH; Lamb DC; Liedl T
    ACS Nano; 2017 Nov; 11(11):11264-11272. PubMed ID: 29063765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Förster resonance energy transfer efficiency measurements using simultaneous spectral unmixing of excitation and emission spectra.
    Mustafa S; Hannagan J; Rigby P; Pfleger K; Corry B
    J Biomed Opt; 2013 Feb; 18(2):26024. PubMed ID: 23423332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cascade FRET-mediated ratiometric sensor for Cu2+ ions based on dual fluorescent ligand-coated polymer nanoparticles.
    Frigoli M; Ouadahi K; Larpent C
    Chemistry; 2009 Aug; 15(33):8319-30. PubMed ID: 19575425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiplexed Biosensing and Bioimaging Using Lanthanide-Based Time-Gated Förster Resonance Energy Transfer.
    Qiu X; Xu J; Cardoso Dos Santos M; Hildebrandt N
    Acc Chem Res; 2022 Feb; 55(4):551-564. PubMed ID: 35084817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff.
    Mahajan PG; Bhopate DP; Kolekar GB; Patil SR
    J Fluoresc; 2016 Jul; 26(4):1467-78. PubMed ID: 27246163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling Förster resonance energy transfer (FRET) using anisotropy resolved multi-dimensional emission spectroscopy (ARMES).
    Gordon F; Elcoroaristizabal S; Ryder AG
    Biochim Biophys Acta Gen Subj; 2021 Feb; 1865(2):129770. PubMed ID: 33214128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of polymer-coated quantum dots with integrated acceptor dyes as FRET-based nanoprobes.
    Fernandez-Argüelles MT; Yakovlev A; Sperling RA; Luccardini C; Gaillard S; Medel AS; Mallet JM; Brochon JC; Feltz A; Oheim M; Parak WJ
    Nano Lett; 2007 Sep; 7(9):2613-7. PubMed ID: 17691850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sub-20 nm Core-Shell-Shell Nanoparticles for Bright Upconversion and Enhanced Förster Resonant Energy Transfer.
    Siefe C; Mehlenbacher RD; Peng CS; Zhang Y; Fischer S; Lay A; McLellan CA; Alivisatos AP; Chu S; Dionne JA
    J Am Chem Soc; 2019 Oct; 141(42):16997-17005. PubMed ID: 31592655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.