These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 35328716)

  • 1. Constructing Morphologically Tunable Copper Oxide-Based Nanomaterials on Cu Wire with/without the Deposition of Manganese Oxide as Bifunctional Materials for Glucose Sensing and Supercapacitors.
    Chang HW; Chen SC; Chen PW; Liu FJ; Tsai YC
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly sensitive non-enzymatic glucose sensor based on bimetallic Cu-Ag superstructures.
    Li H; Guo CY; Xu CL
    Biosens Bioelectron; 2015 Jan; 63():339-346. PubMed ID: 25113052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical synthesis of flower-like hybrid Cu(OH)
    Shinde SK; Fulari VJ; Kim DY; Maile NC; Koli RR; Dhaygude HD; Ghodake GS
    Colloids Surf B Biointerfaces; 2017 Aug; 156():165-174. PubMed ID: 28528133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cobalt-copper bimetallic nanostructures prepared by glancing angle deposition for non-enzymatic voltammetric determination of glucose.
    Pak M; Moshaii A; Siampour H; Abbasian S; Nikkhah M
    Mikrochim Acta; 2020 Apr; 187(5):276. PubMed ID: 32307592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cu Aerogels with Sustainable Cu(I)/Cu(II) Redox Cycles for Sensitive Nonenzymatic Glucose Sensing.
    Fang Q; Wang H; Wei X; Tang Y; Luo X; Xu W; Hu L; Gu W; Zhu C
    Adv Healthc Mater; 2023 Oct; 12(27):e2301073. PubMed ID: 37285868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-situ facile preparation of highly efficient copper/nickel bimetallic nanocatalyst on chemically grafted carbon nanotubes for nonenzymatic sensing of glucose.
    Zhang C; Li F; Huang S; Li M; Guo T; Mo C; Pang X; Chen L; Li X
    J Colloid Interface Sci; 2019 Dec; 557():825-836. PubMed ID: 31580978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spherulitic copper-copper oxide nanostructure-based highly sensitive nonenzymatic glucose sensor.
    Das G; Tran TQ; Yoon HH
    Int J Nanomedicine; 2015; 10 Spec Iss(Spec Iss):165-78. PubMed ID: 26346651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparing cuprous oxide nanomaterials by electrochemical method for non-enzymatic glucose biosensor.
    Nguyen TT; Huy BT; Hwang SY; Vuong NM; Pham QT; Nghia NN; Kirtland A; Lee YI
    Nanotechnology; 2018 May; 29(20):205501. PubMed ID: 29480163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CuO nanowire/microflower/nanowire modified Cu electrode with enhanced electrochemical performance for non-enzymatic glucose sensing.
    Li C; Yamahara H; Lee Y; Tabata H; Delaunay JJ
    Nanotechnology; 2015 Jul; 26(30):305503. PubMed ID: 26159235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High performance nonenzymatic electrochemical sensors
    Alam MM; Howlader MMR
    Analyst; 2024 Jan; 149(3):712-728. PubMed ID: 37755066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Copper Foam-Supported CuCo₂O₄ Nanosheet Arrays as Electrode for Enhanced Non-Enzymatic Glucose Sensing.
    Liu F; Zhuang Y; Guo M; Chen Y; Tu J; Ding L
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29642477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical Structures Composed of Cu(OH)
    Ao Y; Ao J; Zhao L; Hu L; Qu F; Guo B; Liu X
    Langmuir; 2022 Nov; 38(45):13659-13667. PubMed ID: 36318699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly active 3-dimensional cobalt oxide nanostructures on the flexible carbon substrates for enzymeless glucose sensing.
    Kannan P; Maiyalagan T; Marsili E; Ghosh S; Guo L; Huang Y; Rather JA; Thiruppathi D; Niedziolka-Jönsson J; Jönsson-Niedziolka M
    Analyst; 2017 Nov; 142(22):4299-4307. PubMed ID: 29039429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrothermal-reduction synthesis of manganese oxide nanomaterials for electrochemical supercapacitors.
    Zhang X; Chen Y; Yu P; Ma Y
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7711-4. PubMed ID: 21138016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrothermal synthesis of CuO micro-/nanostructures and their applications in the oxidative degradation of methylene blue and non-enzymatic sensing of glucose/H2O2.
    Prathap MU; Kaur B; Srivastava R
    J Colloid Interface Sci; 2012 Mar; 370(1):144-54. PubMed ID: 22284573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced catalytic and supercapacitor activities of DNA encapsulated β-MnO₂ nanomaterials.
    Ede SR; Ramadoss A; Anantharaj S; Nithiyanantham U; Kundu S
    Phys Chem Chem Phys; 2014 Oct; 16(39):21846-59. PubMed ID: 25201177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ deposition of MOF-74(Cu) nanosheet arrays onto carbon cloth to fabricate a sensitive and selective electrocatalytic biosensor and its application for the determination of glucose in human serum.
    Hu S; Lin Y; Teng J; Wong WL; Qiu B
    Mikrochim Acta; 2020 Nov; 187(12):670. PubMed ID: 33219870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional porous Cu@Cu
    Gao Y; Yang F; Yu Q; Fan R; Yang M; Rao S; Lan Q; Yang Z; Yang Z
    Mikrochim Acta; 2019 Feb; 186(3):192. PubMed ID: 30778676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extended Graphite Supported Flower-like MnO
    Chang HW; Dong CL; Chen YH; Xu YZ; Huang TC; Chen SC; Liu FJ; Lai YH; Tsai YC
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoporous CuO layer modified Cu electrode for high performance enzymatic and non-enzymatic glucose sensing.
    Li C; Kurniawan M; Sun D; Tabata H; Delaunay JJ
    Nanotechnology; 2015 Jan; 26(1):015503. PubMed ID: 25493443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.